forked from PaddlePaddle/PaddleSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathupernet_cae_base_ade20k_512x512_160k.yml
79 lines (71 loc) · 1.6 KB
/
upernet_cae_base_ade20k_512x512_160k.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
_base_: '../_base_/ade20k.yml'
batch_size: 4 # total is 16
iters: 160000
model:
type: UPerNetCAE
backbone:
type: CAE
img_size: 512
patch_size: 16
embed_dim: 768
depth: 12
num_heads: 12
mlp_ratio: 4
qkv_bias: True
drop_rate: 0.0
drop_path_rate: 0.1
init_values: 0.1
use_rel_pos_bias: True
pretrained: https://bj.bcebos.com/paddleseg/dygraph/ade20k/upernet_caebase_ade20k_512x512_160k/pretrained/model.pdparams
backbone_indices: [3, 5, 7, 11]
channels: 768
fpn_channels: 768
head_channels: 768
channels_fpn: [768, 768, 768, 768]
train_dataset:
type: ADE20K
dataset_root: data/ADEChallengeData2016/
transforms:
- type: ResizeStepScaling
min_scale_factor: 0.5
max_scale_factor: 2.0
scale_step_size: 0.0
- type: RandomPaddingCrop
crop_size: [512, 512]
- type: RandomHorizontalFlip
- type: RandomDistort
- type: Normalize
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
mode: train
val_dataset:
type: ADE20K
dataset_root: data/ADEChallengeData2016/
transforms:
- type: ResizeByShort
short_size: 512
- type: Normalize
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
test_config:
is_slide: True
crop_size: [512, 512]
stride: [341, 341]
loss:
types:
- type: CrossEntropyLoss
coef: [1, 0.4]
optimizer:
_inherited_: False
type: AdamWDL_CAE
beta1: 0.9
beta2: 0.999
weight_decay: 0.0
layerwise_decay: 0.65
lr_scheduler:
type: PolynomialDecay
warmup_iters: 1500
warmup_start_lr: 0.0
learning_rate: 0.0002
end_lr: 0.0
power: 1.0