-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.py
44 lines (36 loc) · 1.87 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from misc.eval_utils import eval_split
import models
from data.dataloader import *
import argparse
import paddle
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Captioning Model')
parser.add_argument('--dataset', type=str, default="flickr8k")
parser.add_argument('--input_json', type=str, default='filelists/flickr8k.json',
help='path to the json file containing additional info and vocab')
parser.add_argument('--input_label_h5', type=str, default='filelists/flickr8k_label.h5',
help='path to the h5file containing the preprocessed dataset')
parser.add_argument('--input_fc_dir', type=str, default='filelists/f8ktalk_fc_rxt',
help='path to the directory containing the preprocessed fc feats')
parser.add_argument('--input_att_dir', type=str, default='filelists/f8ktalk_att_rxt',
help='path to the directory containing the preprocessed att feats')
parser.add_argument('--seq_per_img', type=int, default=5, help='5 sents/image')
parser.add_argument('--model_name', type=str, default="vatt")
parser.add_argument('--batch_size', type=int, default=10)
parser.add_argument('--beam_size', type=int, default=1)
args = parser.parse_args()
print('Captioning Model Evaluation')
loader = DataLoader(args)
args.vocab_size = loader.get_vocab_size()
model = models.setup(args)
fname = 'saved_models/%s_best.pdparams' % args.model_name
data = paddle.load(fname)
model.load_dict(data['state_dict'])
eval_kwargs = {'split': 'test',
'beam_size': args.beam_size,
'dataset': args.model_name}
lang_scores, predictions = eval_split(model, loader, eval_kwargs)
print(lang_scores)
if not os.path.isdir('vis'):
os.mkdir('vis')
json.dump(predictions, open('vis/vis.json', 'w'))