-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
197 lines (164 loc) · 7.94 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import misc.losses as loss
from misc.rewards import get_self_critical_reward
import models
from data.dataloader import *
from misc.eval_utils import eval_split
from tqdm import tqdm
import argparse
from shutil import copyfile
import paddle.optimizer as optim
try:
import tensorboardX as tb
except ImportError:
print("tensorboardX is not installed")
tb = None
def train_xe(model, dataloader, optimizer):
model.train()
running_loss = 0.0
with tqdm(desc='Epoch %d - train' % epoch, unit='it', total=len(dataloader)) as pbar:
for it, data in enumerate(dataloader):
tmp = [data['fc_feats'], data['att_feats'], data['labels'], data['masks'], data['att_masks']]
tmp = [_ if _ is None else _.cuda() for _ in tmp]
fc_feats, att_feats, labels, masks, att_masks = tmp
model_out = model(fc_feats, att_feats, labels, att_masks)
loss = crit(model_out, labels[:, 1:], masks[:, 1:]).mean()
loss.backward()
optimizer.step()
optimizer.clear_grad()
this_loss = loss.item()
running_loss += this_loss
pbar.set_postfix(loss=running_loss / (it + 1))
pbar.update()
loss = running_loss / len(dataloader)
return loss
def train_scst(model, dataloader, optimizer):
running_loss = 0.0
running_reward = 0.0
beam_size = 1
with tqdm(desc='Epoch %d - train' % epoch, unit='it', total=len(dataloader)) as pbar:
for it, data in enumerate(dataloader):
tmp = [data['fc_feats'], data['att_feats'], data['labels'], data['att_masks']]
tmp = [_ if _ is None else _.cuda() for _ in tmp]
fc_feats, att_feats, labels, att_masks = tmp
gts = data['gts']
gt_indices = paddle.arange(0, len(data['gts']))
model.eval()
with paddle.no_grad():
greedy_res, _ = model(fc_feats, att_feats, att_masks, beam_size, mode='beam_search')
model.train()
gen_result, sample_logprobs = model(fc_feats, att_feats, att_masks,
opt={'sample_n': 5}, mode='sample')
gts = [gts[_] for _ in gt_indices.tolist()]
reward = get_self_critical_reward(greedy_res, gts, gen_result)
reward = paddle.to_tensor(reward)
loss = rl_crit(sample_logprobs, gen_result, reward).mean()
this_reward = reward[:, 0].mean().item()
loss.backward()
optimizer.step()
optimizer.clear_grad()
this_loss = loss.item()
running_loss += this_loss
running_reward += this_reward
pbar.set_postfix(reward=running_reward / (it + 1))
pbar.update()
loss = running_loss / len(dataloader)
reward = running_reward / len(dataloader)
return loss, reward
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Captioning Model')
parser.add_argument('--dataset', type=str, default="flickr8k")
parser.add_argument('--input_json', type=str, default='filelists/flickr8k.json',
help='path to the json file containing additional info and vocab')
parser.add_argument('--input_label_h5', type=str, default='filelists/flickr8k_label.h5',
help='path to the h5file containing the preprocessed dataset')
parser.add_argument('--input_fc_dir', type=str, default='filelists/f8ktalk_fc_rxt',
help='path to the directory containing the preprocessed fc feats')
parser.add_argument('--input_att_dir', type=str, default='filelists/f8ktalk_att_rxt',
help='path to the directory containing the preprocessed att feats')
parser.add_argument('--model_name', type=str, default="vatt")
parser.add_argument('--seq_per_img', type=int, default=5, help='5 sents/image')
parser.add_argument('--learning_rate', type=float, default=2e-4, help='learning rate')
parser.add_argument('--batch_size', type=int, default=10)
parser.add_argument('--sc_flag', type=int, default=1)
parser.add_argument('--resume_best', type=int, default=0)
parser.add_argument('--resume_last', type=int, default=1)
parser.add_argument('--label_smoothing', type=float, default=0.2)
parser.add_argument('--logs_folder', type=str, default='logs')
parser.add_argument('--max_epochs', type=int, default=25, help='number of epochs')
args = parser.parse_args()
print('Captioning Model Training')
tb_summary_writer = tb and tb.SummaryWriter(os.path.join(args.logs_folder, args.model_name)) # tensorboard --logdir=/
args.scheduled_sampling_start = 0
loader = DataLoader(args)
args.vocab_size = loader.get_vocab_size()
args.seq_length = loader.get_seq_length()
model = models.setup(args)
optimizer = optim.Adam(learning_rate=args.learning_rate,
parameters=model.parameters(),
beta1=0.9,
beta2=0.999,
epsilon=1e-8,
weight_decay=0.0,
grad_clip=paddle.nn.ClipGradByValue(0.1))
use_sc = args.sc_flag
best_val_cider = .0
start_epoch = 0
if args.resume_last or args.resume_best:
if args.resume_last:
fname = 'saved_models/%s_last.pdparams' % args.model_name
else:
fname = 'saved_models/%s_best.pdparams' % args.model_name
if os.path.exists(fname):
data = paddle.load(fname)
model.load_dict(data['state_dict'])
optimizer.set_state_dict(data['optimizer'])
start_epoch = data['epoch'] + 1
best_val_cider = data['best_val_cider']
if args.label_smoothing > 0:
crit = loss.LabelSmoothing(args.vocab_size, smoothing=args.label_smoothing)
else:
crit = loss.LanguageModelCriterion()
rl_crit = loss.RewardCriterion()
if use_sc:
args.scheduled_sampling_start = -1
end_epoch = args.max_epochs
for epoch in range(start_epoch, end_epoch):
# Assign the scheduled sampling prob
if epoch > args.scheduled_sampling_start >= 0:
model.ss_prob = min(0.05 * (epoch - args.scheduled_sampling_start) // 5, 0.5)
loader.reset_iterator('train')
dataloader_train = loader.loaders['train']
# If start self critical training
if not use_sc:
train_loss = train_xe(model, dataloader_train, optimizer)
else:
train_loss, reward = train_scst(model, dataloader_train, optimizer)
tb_summary_writer.add_scalar('avg_reward', reward, epoch)
tb_summary_writer.add_scalar('train_loss', train_loss, epoch)
# eval model
eval_kwargs = {'split': 'val',
'beam_size': 1,
'dataset': args.dataset}
lang_scores, _ = eval_split(model, loader, eval_kwargs)
print("Validation scores", lang_scores)
tb_summary_writer.add_scalar('BLEU1', lang_scores['BLEU'][0], epoch)
tb_summary_writer.add_scalar('BLEU4', lang_scores['BLEU'][3], epoch)
tb_summary_writer.add_scalar('METEOR', lang_scores['METEOR'], epoch)
tb_summary_writer.add_scalar('ROUGE', lang_scores['ROUGE'], epoch)
tb_summary_writer.add_scalar('CIDEr', lang_scores['CIDEr'], epoch)
current_cider = lang_scores['CIDEr']
best_flag = False
if current_cider > best_val_cider:
best_val_cider = current_cider
best_flag = True
paddle.save({
'epoch': epoch,
'current_cider': current_cider,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'best_val_cider': best_val_cider,
'use_sc': use_sc,
}, 'saved_models/%s_last.pdparams' % args.model_name)
if best_flag:
copyfile('saved_models/%s_last.pdparams' % args.model_name,
'saved_models/%s_best.pdparams' % args.model_name)