-
Notifications
You must be signed in to change notification settings - Fork 36
/
mscnn_eval.py
116 lines (91 loc) · 3.46 KB
/
mscnn_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
# -*- coding:utf-8 -*-
"""
@Function: MSCNN crowd counting model evaluation
@Source: Multi-scale Convolution Neural Networks for Crowd Counting
https://arxiv.org/abs/1702.02359
@Data set: https://pan.baidu.com/s/12EqB1XDyFBB0kyinMA7Pqw 密码: sags --> Have some problems
@Author: Ling Bao
@Code verification: Ling Bao
@说明:
学习率:1e-4
平均loss : 14.
@Data: Sep. 11, 2017
@Version: 0.1
"""
# 系统库
import time
import numpy as np
import cv2
# 机器学习库
from tensorflow.python.platform import gfile
import tensorflow as tf
# 项目库
import mscnn
# 参数设置
eval_dir = 'eval'
data_test_gt = 'Data_original/Data_gt/train_gt/'
data_test_im = 'Data_original/Data_im/train_im/'
data_test_index = 'Data_original/dir_name.txt'
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string('eval_dir', eval_dir, """日志目录""")
tf.app.flags.DEFINE_string('data_test_gt', data_test_gt, """测试集集标签""")
tf.app.flags.DEFINE_string('data_test_im', data_test_im, """测试集图片""")
tf.app.flags.DEFINE_string('data_test_index', data_test_index, """测试集图片""")
def evaluate():
"""
在ShanghaiTech测试集上对mscnn模型评价
:return:
"""
# 构建图模型
images = tf.placeholder("float")
labels = tf.placeholder("float")
predict_op = mscnn.inference(images)
loss_op = mscnn.loss(predict_op, labels)
# 载入模型参数
saver = tf.train.Saver()
sess = tf.Session()
# 对模型变量进行初始化并用其创建会话
init_op = tf.global_variables_initializer()
sess.run(init_op)
checkpoint_dir = tf.train.get_checkpoint_state(FLAGS.model_dir)
if checkpoint_dir and checkpoint_dir.model_checkpoint_path:
saver.restore(sess, checkpoint_dir.model_checkpoint_path)
else:
print('Not found checkpoint file')
return False
dir_file = open(FLAGS.data_test_index)
dir_names = dir_file.readlines()
step = 0
sum_all_mae = 0
sum_all_mse = 0
for file_name in dir_names:
step += 1
im_name, gt_name = file_name.split(' ')
gt_name = gt_name.split('\n')[0] # 分离出最后一个回车符
batch_xs = cv2.imread(FLAGS.data_test_im + im_name)
batch_xs = np.array(batch_xs, dtype=np.float32)
batch_xs = batch_xs.reshape(1, len(batch_xs), -1, 3)
# 测试数据(密度图)
batch_ys = np.array(np.load(FLAGS.data_test_gt + gt_name))
batch_ys = np.array(batch_ys, dtype=np.float32)
batch_ys = batch_ys.reshape(1, len(batch_ys), -1)
start = time.clock()
predict = sess.run([predict_op], feed_dict={images: batch_xs})
loss_value = sess.run(loss_op, feed_dict={images: batch_xs, labels: batch_ys})
end = time.clock()
print("time: %s\t loss_value: %s\t counting:%.7f\t predict:%.7f\t diff:%.7f" % \
((end - start), loss_value, sum(sum(sum(batch_ys))), sum(sum(sum(predict[0]))),
sum(sum(sum(batch_ys)))-sum(sum(sum(predict[0])))))
sum_ab = abs(sum(sum(sum(batch_ys))) - sum(sum(sum(predict[0]))))
sum_all_mae += sum_ab
sum_all_mse += sum_ab * sum_ab
avg_mae = sum_all_mae / len(dir_names)
avg_mse = (sum_all_mse / len(dir_names)) ** 0.5
print("MAE: %.7f\t MSE:%.7f" % (avg_mae, avg_mse))
def main(argv=None):
if gfile.Exists(FLAGS.eval_dir):
gfile.DeleteRecursively(FLAGS.eval_dir)
gfile.MakeDirs(FLAGS.eval_dir)
evaluate()
if __name__ == '__main__':
tf.app.run()