-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_tradition.py
186 lines (145 loc) · 6.36 KB
/
train_tradition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import os
import argparse
import time
import torch
from torch.utils.tensorboard import SummaryWriter
from timm.data import Mixup
from timm.scheduler.cosine_lr import CosineLRScheduler
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy
from utils import get_network, dataloader, dataset
from engine import train, test
def parse_option():
parser = argparse.ArgumentParser('Original distillation Models')
parser.add_argument('-target', type=int, required=True, help='dataset target')
parser.add_argument('--batch_size', type=int, default=128,
help='batch_size')
parser.add_argument('--num_workers', type=int, default=4,
help='num of workers to use')
parser.add_argument('--epochs', type=int, default=200,
help='number of training epoch5s')
# optimization
parser.add_argument('--learning_rate_fc', type=float, default=0.1,
help='learning rate')
parser.add_argument("--weight_decay", type=float, default=5e-4,
help="weight decay")
parser.add_argument("--warmup", type=int, default=3,
help="number of steps to warmup for")
parser.add_argument('--momentum', type=float, default=0.9,
help='momentum')
# model
parser.add_argument('--net', type=str, required=True,
help='choose pre-trained model')
# dataset
parser.add_argument('--root', type=str, default='./data',
help='dataset')
parser.add_argument('--dataset', type=str, default='cifar100',
help='dataset')
parser.add_argument('--split', nargs='*', default=['class_num'],
help='specific split region')
# other
parser.add_argument('--seed', type=int, default=0,
help='seed for initializing training')
parser.add_argument('--model_dir', type=str, default='./save/models',
help='path to save models')
parser.add_argument('--image_dir', type=str, default='./save/images',
help='path to save images')
parser.add_argument('--filename', type=str, default=None,
help='filename to save')
parser.add_argument('--trial', type=int, default=1,
help='number of trials')
parser.add_argument('--gpu', type=str, default='0',
help='gpu to use')
args = parser.parse_args()
args.filename = '{}_{}_lrf_{}_decay_{}_bsz_{}_epochs_{}_trial_{}'. \
format(args.dataset, args.net,
args.learning_rate_fc, args.weight_decay, args.batch_size, args.epochs, args.trial)
args.model_folder = os.path.join(args.model_dir, args.filename)
if not os.path.isdir(args.model_folder):
os.makedirs(args.model_folder)
args.image_folder = os.path.join(args.image_dir, args.filename)
if not os.path.isdir(args.image_folder):
os.makedirs(args.image_folder)
return args
def main():
args = parse_option()
# environment settings
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# data preparation
print('==> Preparing data..')
if args.split == ['class_num']:
Set, out_classes, mean, std = dataset(args.dataset)
Split = [out_classes]
else:
Split = [int(i) for i in args.split]
target = args.target
train_loader = dataloader(target, 'train', Split, args.dataset,
num_workers=args.num_workers,
batch_size=args.batch_size,
shuffle=True
)
val_loader = dataloader(target, 'test', Split, args.dataset,
num_workers=args.num_workers,
batch_size=args.batch_size,
shuffle=False
)
# create model
print('==> Building model..')
classes = Split[target]
model = get_network(args.net, classes, device)
# data augmentation
mixup = 0.8
cutmix = 1.0
cutmix_minmax = None
mixup_prob = 1.0
mixup_switch_prob = 0.5
mixup_mode = 'batch'
smoothing = 0.1
mixup_fn = None
mixup_active = mixup > 0 or cutmix > 0. or cutmix_minmax is not None
if mixup_active:
mixup_fn = Mixup(
mixup_alpha=mixup, cutmix_alpha=cutmix, cutmix_minmax=cutmix_minmax,
prob=mixup_prob, switch_prob=mixup_switch_prob, mode=mixup_mode,
label_smoothing=smoothing, num_classes=classes)
# criterion
if mixup_active:
criterion_train = SoftTargetCrossEntropy()
elif smoothing:
criterion_train = LabelSmoothingCrossEntropy(smoothing)
else:
criterion_train = torch.nn.CrossEntropyLoss()
criterion_test = torch.nn.CrossEntropyLoss()
# optimizer
optimizer = torch.optim.SGD(model.parameters(), lr=args.learning_rate_fc, momentum=args.momentum, weight_decay=args.weight_decay)
# scheduler
scheduler = CosineLRScheduler(optimizer, t_initial=args.epochs, warmup_t=args.warmup)
# tensorboard writer
writer = SummaryWriter(log_dir=os.path.join('runs', time.strftime(f"%Y-%m-%d {time.localtime().tm_hour+8}:%M:%S", time.localtime())))
# training loop
best_acc = 0.0
for epoch in range(args.epochs):
print('\nEpoch: %d' % (epoch+1))
# train model
acc_train = train(model, train_loader, mixup_fn, optimizer, scheduler, epoch, criterion_train, device, Split, target)
scheduler.step(epoch)
# test model
with torch.no_grad():
acc_test = test(model, val_loader, criterion_test, device, Split, target)
# save model
acc = acc_test
if best_acc < acc:
filename_sub = 'target:{tar}_acc:{best_acc}.pth'.format(tar=args.target, best_acc=format(best_acc, '.6f'))
filename_best = 'target:{tar}_acc:{acc}.pth'.format(tar=args.target, acc=format(acc, '.6f'))
sub_path = os.path.join(args.model_folder, filename_sub)
best_path = os.path.join(args.model_folder, filename_best)
if best_acc != 0:
os.remove(sub_path)
torch.save(model.state_dict(), best_path)
best_acc = acc
writer.add_scalar('Train/Accuracy', acc_train , epoch)
writer.add_scalar('Test/Accuracy', acc_test , epoch)
writer.close()
print("Done!")
if __name__ == '__main__':
main()