-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathtest_single.py
155 lines (116 loc) · 4.97 KB
/
test_single.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
from os import write
import sys
import argparse
import time
import json
import numpy as np
import torch
import torch.nn as nn
from model.esg import ESG
from util import *
from evaluate import get_scores
def str_to_bool(value):
if isinstance(value, bool):
return value
if value.lower() in {'false', 'f', '0', 'no', 'n'}:
return False
elif value.lower() in {'true', 't', '1', 'yes', 'y'}:
return True
raise ValueError(f'{value} is not a valid boolean value')
class JsonEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.integer):
return int(obj)
elif isinstance(obj, np.floating):
return float(obj)
elif isinstance(obj, np.ndarray):
return obj.tolist()
else:
return super(JsonEncoder, self).default(obj)
#log
class Logger(object):
def __init__(self,fileN ="Default.log"):
self.terminal = sys.stdout
self.log = open(fileN,"a")
def write(self,message):
self.terminal.write(message)
self.log.write(message)
def flush(self):
pass
def evaluate(data, inputs, targets, model, evaluateL2, evaluateL1, batch_size):
model.eval()
total_loss = 0
total_loss_l1 = 0
n_samples = 0
predict = None
test = None
for X, Y in data.get_batches(inputs, targets, batch_size, False):
X = torch.unsqueeze(X,dim=1)
X = X.transpose(2,3) #(B, F, N, T)
with torch.no_grad():
output = model(X)
output = torch.squeeze(output)
if len(output.shape)==1:
output = output.unsqueeze(dim=0)
if predict is None:
predict = output
test = Y
else:
predict = torch.cat((predict, output))
test = torch.cat((test, Y))
scale = data.scale.expand(output.size(0), data.m)
total_loss += evaluateL2(output * scale, Y * scale).item()
total_loss_l1 += evaluateL1(output * scale, Y * scale).item()
n_samples += (output.size(0) * data.m)
rae = (total_loss_l1 / n_samples) / data.rae
scale = data.scale.expand(predict.size(0), data.m)
predict = predict * scale
test = test * scale
predict = predict.data.cpu().numpy()
Ytest = test.data.cpu().numpy()
print("predict:")
print(predict.shape)
print("Ytest")
print(Ytest.shape)
scores = get_scores(predict, Ytest,0, 'single')
scores['RAE'] = rae.item()
return scores, predict, Ytest
parser = argparse.ArgumentParser(description='PyTorch Time series forecasting')
parser.add_argument('--device',type=str,default='cuda:0',help='')
parser.add_argument('--data', type=str, default='electricity', help='the name of the dataset')
parser.add_argument('--horizon', type=int, default=24)
parser.add_argument('--expid', type=str, default='1',
help='The folder name used to save model, output and evaluation metrics. This can be set to any word')
parser.add_argument('--normalize', type=int, default=2)
parser.add_argument('--seq_in_len',type=int,default=168,help='input sequence length')
parser.add_argument('--batch_size',type=int,default=4, help='batch size')
parser.add_argument('--runs',type=int,default=10,help='number of runs')
args = parser.parse_args()
device = torch.device(args.device)
torch.set_num_threads(3)
def main():
save_folder = os.path.join('saves', args.data, args.expid, 'horizon_'+str(args.horizon))
if not os.path.exists(save_folder):
os.makedirs(save_folder)
model_path = os.path.join('trained',args.data+'_'+str(args.horizon)+'.pt')
sys.stdout = Logger(os.path.join(save_folder,'log.txt'))
Data = DataLoaderS(args.data, 0.6, 0.2, device, args.horizon, args.seq_in_len, args.normalize)
evaluateL2 = nn.MSELoss(size_average=False).to(device)
evaluateL1 = nn.L1Loss(size_average=False).to(device)
# Load the best saved model.
with open(model_path, 'rb') as f:
model = torch.load(f, map_location=device)
#model = model.to(device)
val_scores, P, Y = evaluate(Data, Data.valid[0], Data.valid[1], model, evaluateL2, evaluateL1,
args.batch_size)
test_scores, predict, Ytest = evaluate(Data, Data.test[0], Data.test[1], model, evaluateL2, evaluateL1,
args.batch_size)
print("valid rse {:5.4f} | valid rae {:5.4f} | valid corr {:5.4f}".format(val_scores['RSE'], val_scores['RAE'], val_scores['CORR']))
# save test results
np.savez(os.path.join(save_folder,'test-results.npz'), predictions=predict, targets=Ytest)
print(json.dumps(test_scores, cls=JsonEncoder, indent=4))
with open(os.path.join(save_folder,'test-scores.json'), 'w+') as f:
json.dump(test_scores, f, cls=JsonEncoder, indent=4)
# print("final test rse {:5.4f} | test rae {:5.4f} | test corr {:5.4f}".format(test_scores['RSE'], test_scores['RAE'], test_scores['CORR']))
if __name__ == "__main__":
main()