-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathface_trainer.py
196 lines (150 loc) · 5.71 KB
/
face_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
#thanks to https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
#imports
from __future__ import print_function, division
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import numpy as np
import torchvision
from torchvision import datasets, models, transforms, utils
import time
import os
import os.path
import copy
import pandas as pd
from skimage import io, transform
from torch.utils.data import Dataset, DataLoader
#ignore warnings
import warnings
warnings.filterwarnings("ignore")
#path to the inference model
PATH = "./nn_model/faces_ft.pt"
#number of epochs for passing images through the model in training
no_epochs = 10
#number of faces to train off of
number_of_faces = len(os.listdir('./images/train'))
#data augmentation and normalization for training
#just normalization for validation
data_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
#the data loaders for getting images into the program for training
data_dir = 'images/'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
data_transforms[x])
for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,
shuffle=True, num_workers=4)
for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
#get a batch of training data
inputs, classes = next(iter(dataloaders['train']))
#make a grid from batch
out = torchvision.utils.make_grid(inputs)
def train_model(model, criterion, optimizer, scheduler, num_epochs=no_epochs):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
#each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
scheduler.step()
model.train() #set model to training mode
else:
model.eval() #set model to evaluate mode
running_loss = 0.0
running_corrects = 0
#iterate over data.
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
#zero the parameter gradients
optimizer.zero_grad()
#forward
#track history if only in train
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
#backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
#statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
#deep copy the model
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
#load best model weights
model.load_state_dict(best_model_wts)
return model
def face_train():
# TODO: need to figure out how to add a single additional image to a previously trained model, at the moment it seems to just reset the whole model
# if the prior dataset isnt included (so cant deleted other training data)
#when training check for existance of existing model and load it, make a new one if not
# if os.path.exists(PATH):
# print("Using existing model")
# #load pretrained model from local directory
# model_ft = torch.load(PATH)
# num_ftrs = model_ft.fc.in_features
# model_ft.fc = nn.Linear(num_ftrs, number_of_faces)
# model_ft = model_ft.to(device)
# criterion = nn.CrossEntropyLoss()
# # Observe that all parameters are being optimized
# optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)
# # Decay LR by a factor of 0.1 every 7 epochs
# exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
# model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler,
# num_epochs=no_epochs)
# else:
# print("Using a new model")
#load a pretrained model
#get the number of faces from the number of training folders
number_of_faces = len(os.listdir('./images/train'))
class_names = image_datasets['train'].classes
#load a pretrained model
model_ft = models.resnet18(pretrained=True)
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, number_of_faces)
model_ft = model_ft.to(device)
criterion = nn.CrossEntropyLoss()
#observe that all parameters are being optimized
optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)
#decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
#train the model on the face data
model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler,
num_epochs=no_epochs)
#save the model
torch.save(model_ft, PATH)
#if called direct then run the function
if __name__ == '__main__':
print(face_train())