-
Notifications
You must be signed in to change notification settings - Fork 204
/
Copy pathenv.py
executable file
·631 lines (539 loc) · 25.1 KB
/
env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
"""SUMO Environment for Traffic Signal Control."""
import os
import sys
from pathlib import Path
from typing import Callable, Optional, Tuple, Union
if "SUMO_HOME" in os.environ:
tools = os.path.join(os.environ["SUMO_HOME"], "tools")
sys.path.append(tools)
else:
raise ImportError("Please declare the environment variable 'SUMO_HOME'")
import gymnasium as gym
import numpy as np
import pandas as pd
import sumolib
import traci
from gymnasium.utils import EzPickle, seeding
from pettingzoo import AECEnv
from pettingzoo.utils import agent_selector, wrappers
from pettingzoo.utils.conversions import parallel_wrapper_fn
from .observations import DefaultObservationFunction, ObservationFunction
from .traffic_signal import TrafficSignal
LIBSUMO = "LIBSUMO_AS_TRACI" in os.environ
def env(**kwargs):
"""Instantiate a PettingoZoo environment."""
env = SumoEnvironmentPZ(**kwargs)
env = wrappers.AssertOutOfBoundsWrapper(env)
env = wrappers.OrderEnforcingWrapper(env)
return env
parallel_env = parallel_wrapper_fn(env)
class SumoEnvironment(gym.Env):
"""SUMO Environment for Traffic Signal Control.
Class that implements a gym.Env interface for traffic signal control using the SUMO simulator.
See https://sumo.dlr.de/docs/ for details on SUMO.
See https://gymnasium.farama.org/ for details on gymnasium.
Args:
net_file (str): SUMO .net.xml file
route_file (str): SUMO .rou.xml file
out_csv_name (Optional[str]): name of the .csv output with simulation results. If None, no output is generated
use_gui (bool): Whether to run SUMO simulation with the SUMO GUI
virtual_display (Optional[Tuple[int,int]]): Resolution of the virtual display for rendering
begin_time (int): The time step (in seconds) the simulation starts. Default: 0
num_seconds (int): Number of simulated seconds on SUMO. The duration in seconds of the simulation. Default: 20000
max_depart_delay (int): Vehicles are discarded if they could not be inserted after max_depart_delay seconds. Default: -1 (no delay)
waiting_time_memory (int): Number of seconds to remember the waiting time of a vehicle (see https://sumo.dlr.de/pydoc/traci._vehicle.html#VehicleDomain-getAccumulatedWaitingTime). Default: 1000
time_to_teleport (int): Time in seconds to teleport a vehicle to the end of the edge if it is stuck. Default: -1 (no teleport)
delta_time (int): Simulation seconds between actions. Default: 5 seconds
yellow_time (int): Duration of the yellow phase. Default: 2 seconds
min_green (int): Minimum green time in a phase. Default: 5 seconds
max_green (int): Max green time in a phase. Default: 60 seconds. Warning: This parameter is currently ignored!
single_agent (bool): If true, it behaves like a regular gym.Env. Else, it behaves like a MultiagentEnv (returns dict of observations, rewards, dones, infos).
reward_fn (str/function/dict): String with the name of the reward function used by the agents, a reward function, or dictionary with reward functions assigned to individual traffic lights by their keys.
observation_class (ObservationFunction): Inherited class which has both the observation function and observation space.
add_system_info (bool): If true, it computes system metrics (total queue, total waiting time, average speed) in the info dictionary.
add_per_agent_info (bool): If true, it computes per-agent (per-traffic signal) metrics (average accumulated waiting time, average queue) in the info dictionary.
sumo_seed (int/string): Random seed for sumo. If 'random' it uses a randomly chosen seed.
fixed_ts (bool): If true, it will follow the phase configuration in the route_file and ignore the actions given in the :meth:`step` method.
sumo_warnings (bool): If true, it will print SUMO warnings.
additional_sumo_cmd (str): Additional SUMO command line arguments.
render_mode (str): Mode of rendering. Can be 'human' or 'rgb_array'. Default: None
"""
metadata = {
"render_modes": ["human", "rgb_array"],
}
CONNECTION_LABEL = 0 # For traci multi-client support
def __init__(
self,
net_file: str,
route_file: str,
out_csv_name: Optional[str] = None,
use_gui: bool = False,
virtual_display: Tuple[int, int] = (3200, 1800),
begin_time: int = 0,
num_seconds: int = 20000,
max_depart_delay: int = -1,
waiting_time_memory: int = 1000,
time_to_teleport: int = -1,
delta_time: int = 5,
yellow_time: int = 2,
min_green: int = 5,
max_green: int = 50,
single_agent: bool = False,
reward_fn: Union[str, Callable, dict] = "diff-waiting-time",
observation_class: ObservationFunction = DefaultObservationFunction,
add_system_info: bool = True,
add_per_agent_info: bool = True,
sumo_seed: Union[str, int] = "random",
fixed_ts: bool = False,
sumo_warnings: bool = True,
additional_sumo_cmd: Optional[str] = None,
render_mode: Optional[str] = None,
) -> None:
"""Initialize the environment."""
assert render_mode is None or render_mode in self.metadata["render_modes"], "Invalid render mode."
self.render_mode = render_mode
self.virtual_display = virtual_display
self.disp = None
self._net = net_file
self._route = route_file
self.use_gui = use_gui
if self.use_gui or self.render_mode is not None:
self._sumo_binary = sumolib.checkBinary("sumo-gui")
else:
self._sumo_binary = sumolib.checkBinary("sumo")
assert delta_time > yellow_time, "Time between actions must be at least greater than yellow time."
self.begin_time = begin_time
self.sim_max_time = begin_time + num_seconds
self.delta_time = delta_time # seconds on sumo at each step
self.max_depart_delay = max_depart_delay # Max wait time to insert a vehicle
self.waiting_time_memory = waiting_time_memory # Number of seconds to remember the waiting time of a vehicle (see https://sumo.dlr.de/pydoc/traci._vehicle.html#VehicleDomain-getAccumulatedWaitingTime)
self.time_to_teleport = time_to_teleport
self.min_green = min_green
self.max_green = max_green
self.yellow_time = yellow_time
self.single_agent = single_agent
self.reward_fn = reward_fn
self.sumo_seed = sumo_seed
self.fixed_ts = fixed_ts
self.sumo_warnings = sumo_warnings
self.additional_sumo_cmd = additional_sumo_cmd
self.add_system_info = add_system_info
self.add_per_agent_info = add_per_agent_info
self.label = str(SumoEnvironment.CONNECTION_LABEL)
SumoEnvironment.CONNECTION_LABEL += 1
self.sumo = None
if LIBSUMO:
traci.start([sumolib.checkBinary("sumo"), "-n", self._net]) # Start only to retrieve traffic light information
conn = traci
else:
traci.start([sumolib.checkBinary("sumo"), "-n", self._net], label="init_connection" + self.label)
conn = traci.getConnection("init_connection" + self.label)
self.ts_ids = list(conn.trafficlight.getIDList())
self.observation_class = observation_class
if isinstance(self.reward_fn, dict):
self.traffic_signals = {
ts: TrafficSignal(
self,
ts,
self.delta_time,
self.yellow_time,
self.min_green,
self.max_green,
self.begin_time,
self.reward_fn[ts],
conn,
)
for ts in self.reward_fn.keys()
}
else:
self.traffic_signals = {
ts: TrafficSignal(
self,
ts,
self.delta_time,
self.yellow_time,
self.min_green,
self.max_green,
self.begin_time,
self.reward_fn,
conn,
)
for ts in self.ts_ids
}
conn.close()
self.vehicles = dict()
self.reward_range = (-float("inf"), float("inf"))
self.episode = 0
self.metrics = []
self.out_csv_name = out_csv_name
self.observations = {ts: None for ts in self.ts_ids}
self.rewards = {ts: None for ts in self.ts_ids}
def _start_simulation(self):
sumo_cmd = [
self._sumo_binary,
"-n",
self._net,
"-r",
self._route,
"--max-depart-delay",
str(self.max_depart_delay),
"--waiting-time-memory",
str(self.waiting_time_memory),
"--time-to-teleport",
str(self.time_to_teleport),
]
if self.begin_time > 0:
sumo_cmd.append(f"-b {self.begin_time}")
if self.sumo_seed == "random":
sumo_cmd.append("--random")
else:
sumo_cmd.extend(["--seed", str(self.sumo_seed)])
if not self.sumo_warnings:
sumo_cmd.append("--no-warnings")
if self.additional_sumo_cmd is not None:
sumo_cmd.extend(self.additional_sumo_cmd.split())
if self.use_gui or self.render_mode is not None:
sumo_cmd.extend(["--start", "--quit-on-end"])
if self.render_mode == "rgb_array":
sumo_cmd.extend(["--window-size", f"{self.virtual_display[0]},{self.virtual_display[1]}"])
from pyvirtualdisplay.smartdisplay import SmartDisplay
print("Creating a virtual display.")
self.disp = SmartDisplay(size=self.virtual_display)
self.disp.start()
print("Virtual display started.")
if LIBSUMO:
traci.start(sumo_cmd)
self.sumo = traci
else:
traci.start(sumo_cmd, label=self.label)
self.sumo = traci.getConnection(self.label)
if self.use_gui or self.render_mode is not None:
if "DEFAULT_VIEW" not in dir(traci.gui): # traci.gui.DEFAULT_VIEW is not defined in libsumo
traci.gui.DEFAULT_VIEW = "View #0"
self.sumo.gui.setSchema(traci.gui.DEFAULT_VIEW, "real world")
def reset(self, seed: Optional[int] = None, **kwargs):
"""Reset the environment."""
super().reset(seed=seed, **kwargs)
if self.episode != 0:
self.close()
self.save_csv(self.out_csv_name, self.episode)
self.episode += 1
self.metrics = []
if seed is not None:
self.sumo_seed = seed
self._start_simulation()
if isinstance(self.reward_fn, dict):
self.traffic_signals = {
ts: TrafficSignal(
self,
ts,
self.delta_time,
self.yellow_time,
self.min_green,
self.max_green,
self.begin_time,
self.reward_fn[ts],
self.sumo,
)
for ts in self.reward_fn.keys()
}
else:
self.traffic_signals = {
ts: TrafficSignal(
self,
ts,
self.delta_time,
self.yellow_time,
self.min_green,
self.max_green,
self.begin_time,
self.reward_fn,
self.sumo,
)
for ts in self.ts_ids
}
self.vehicles = dict()
self.num_arrived_vehicles = 0
self.num_departed_vehicles = 0
self.num_teleported_vehicles = 0
if self.single_agent:
return self._compute_observations()[self.ts_ids[0]], self._compute_info()
else:
return self._compute_observations()
@property
def sim_step(self) -> float:
"""Return current simulation second on SUMO."""
return self.sumo.simulation.getTime()
def step(self, action: Union[dict, int]):
"""Apply the action(s) and then step the simulation for delta_time seconds.
Args:
action (Union[dict, int]): action(s) to be applied to the environment.
If single_agent is True, action is an int, otherwise it expects a dict with keys corresponding to traffic signal ids.
"""
# No action, follow fixed TL defined in self.phases
if self.fixed_ts or action is None or action == {}:
for _ in range(self.delta_time):
self._sumo_step()
else:
self._apply_actions(action)
self._run_steps()
observations = self._compute_observations()
rewards = self._compute_rewards()
dones = self._compute_dones()
terminated = False # there are no 'terminal' states in this environment
truncated = dones["__all__"] # episode ends when sim_step >= max_steps
info = self._compute_info()
if self.single_agent:
return observations[self.ts_ids[0]], rewards[self.ts_ids[0]], terminated, truncated, info
else:
return observations, rewards, dones, info
def _run_steps(self):
time_to_act = False
while not time_to_act:
self._sumo_step()
for ts in self.ts_ids:
self.traffic_signals[ts].update()
if self.traffic_signals[ts].time_to_act:
time_to_act = True
def _apply_actions(self, actions):
"""Set the next green phase for the traffic signals.
Args:
actions: If single-agent, actions is an int between 0 and self.num_green_phases (next green phase)
If multiagent, actions is a dict {ts_id : greenPhase}
"""
if self.single_agent:
if self.traffic_signals[self.ts_ids[0]].time_to_act:
self.traffic_signals[self.ts_ids[0]].set_next_phase(actions)
else:
for ts, action in actions.items():
if self.traffic_signals[ts].time_to_act:
self.traffic_signals[ts].set_next_phase(action)
def _compute_dones(self):
dones = {ts_id: False for ts_id in self.ts_ids}
dones["__all__"] = self.sim_step >= self.sim_max_time
return dones
def _compute_info(self):
info = {"step": self.sim_step}
if self.add_system_info:
info.update(self._get_system_info())
if self.add_per_agent_info:
info.update(self._get_per_agent_info())
self.metrics.append(info.copy())
return info
def _compute_observations(self):
self.observations.update(
{
ts: self.traffic_signals[ts].compute_observation()
for ts in self.ts_ids
if self.traffic_signals[ts].time_to_act or self.fixed_ts
}
)
return {
ts: self.observations[ts].copy()
for ts in self.observations.keys()
if self.traffic_signals[ts].time_to_act or self.fixed_ts
}
def _compute_rewards(self):
self.rewards.update(
{
ts: self.traffic_signals[ts].compute_reward()
for ts in self.ts_ids
if self.traffic_signals[ts].time_to_act or self.fixed_ts
}
)
return {ts: self.rewards[ts] for ts in self.rewards.keys() if self.traffic_signals[ts].time_to_act or self.fixed_ts}
@property
def observation_space(self):
"""Return the observation space of a traffic signal.
Only used in case of single-agent environment.
"""
return self.traffic_signals[self.ts_ids[0]].observation_space
@property
def action_space(self):
"""Return the action space of a traffic signal.
Only used in case of single-agent environment.
"""
return self.traffic_signals[self.ts_ids[0]].action_space
def observation_spaces(self, ts_id: str):
"""Return the observation space of a traffic signal."""
return self.traffic_signals[ts_id].observation_space
def action_spaces(self, ts_id: str) -> gym.spaces.Discrete:
"""Return the action space of a traffic signal."""
return self.traffic_signals[ts_id].action_space
def _sumo_step(self):
self.sumo.simulationStep()
self.num_arrived_vehicles += self.sumo.simulation.getArrivedNumber()
self.num_departed_vehicles += self.sumo.simulation.getDepartedNumber()
self.num_teleported_vehicles += self.sumo.simulation.getEndingTeleportNumber()
def _get_system_info(self):
vehicles = self.sumo.vehicle.getIDList()
speeds = [self.sumo.vehicle.getSpeed(vehicle) for vehicle in vehicles]
waiting_times = [self.sumo.vehicle.getWaitingTime(vehicle) for vehicle in vehicles]
num_backlogged_vehicles = len(self.sumo.simulation.getPendingVehicles())
return {
"system_total_running": len(vehicles),
"system_total_backlogged": num_backlogged_vehicles,
"system_total_stopped": sum(
int(speed < 0.1) for speed in speeds
), # In SUMO, a vehicle is considered halting if its speed is below 0.1 m/s
"system_total_arrived": self.num_arrived_vehicles,
"system_total_departed": self.num_departed_vehicles,
"system_total_teleported": self.num_teleported_vehicles,
"system_total_waiting_time": sum(waiting_times),
"system_mean_waiting_time": 0.0 if len(vehicles) == 0 else np.mean(waiting_times),
"system_mean_speed": 0.0 if len(vehicles) == 0 else np.mean(speeds),
}
def _get_per_agent_info(self):
stopped = [self.traffic_signals[ts].get_total_queued() for ts in self.ts_ids]
accumulated_waiting_time = [
sum(self.traffic_signals[ts].get_accumulated_waiting_time_per_lane()) for ts in self.ts_ids
]
average_speed = [self.traffic_signals[ts].get_average_speed() for ts in self.ts_ids]
info = {}
for i, ts in enumerate(self.ts_ids):
info[f"{ts}_stopped"] = stopped[i]
info[f"{ts}_accumulated_waiting_time"] = accumulated_waiting_time[i]
info[f"{ts}_average_speed"] = average_speed[i]
info["agents_total_stopped"] = sum(stopped)
info["agents_total_accumulated_waiting_time"] = sum(accumulated_waiting_time)
return info
def close(self):
"""Close the environment and stop the SUMO simulation."""
if self.sumo is None:
return
if not LIBSUMO:
traci.switch(self.label)
traci.close()
if self.disp is not None:
self.disp.stop()
self.disp = None
self.sumo = None
def __del__(self):
"""Close the environment and stop the SUMO simulation."""
self.close()
def render(self):
"""Render the environment.
If render_mode is "human", the environment will be rendered in a GUI window using pyvirtualdisplay.
"""
if self.render_mode == "human":
return # sumo-gui will already be rendering the frame
elif self.render_mode == "rgb_array":
# img = self.sumo.gui.screenshot(traci.gui.DEFAULT_VIEW,
# f"temp/img{self.sim_step}.jpg",
# width=self.virtual_display[0],
# height=self.virtual_display[1])
img = self.disp.grab()
return np.array(img)
def save_csv(self, out_csv_name, episode):
"""Save metrics of the simulation to a .csv file.
Args:
out_csv_name (str): Path to the output .csv file. E.g.: "results/my_results
episode (int): Episode number to be appended to the output file name.
"""
if out_csv_name is not None:
df = pd.DataFrame(self.metrics)
Path(Path(out_csv_name).parent).mkdir(parents=True, exist_ok=True)
df.to_csv(out_csv_name + f"_conn{self.label}_ep{episode}" + ".csv", index=False)
# Below functions are for discrete state space
def encode(self, state, ts_id):
"""Encode the state of the traffic signal into a hashable object."""
phase = int(np.where(state[: self.traffic_signals[ts_id].num_green_phases] == 1)[0])
min_green = state[self.traffic_signals[ts_id].num_green_phases]
density_queue = [self._discretize_density(d) for d in state[self.traffic_signals[ts_id].num_green_phases + 1 :]]
# tuples are hashable and can be used as key in python dictionary
return tuple([phase, min_green] + density_queue)
def _discretize_density(self, density):
return min(int(density * 10), 9)
class SumoEnvironmentPZ(AECEnv, EzPickle):
"""A wrapper for the SUMO environment that implements the AECEnv interface from PettingZoo.
For more information, see https://pettingzoo.farama.org/api/aec/.
The arguments are the same as for :py:class:`sumo_rl.environment.env.SumoEnvironment`.
"""
metadata = {"render.modes": ["human", "rgb_array"], "name": "sumo_rl_v0", "is_parallelizable": True}
def __init__(self, **kwargs):
"""Initialize the environment."""
EzPickle.__init__(self, **kwargs)
self._kwargs = kwargs
self.seed()
self.env = SumoEnvironment(**self._kwargs)
self.render_mode = self.env.render_mode
self.agents = self.env.ts_ids
self.possible_agents = self.env.ts_ids
self._agent_selector = agent_selector(self.agents)
self.agent_selection = self._agent_selector.reset()
# spaces
self.action_spaces = {a: self.env.action_spaces(a) for a in self.agents}
self.observation_spaces = {a: self.env.observation_spaces(a) for a in self.agents}
# dicts
self.rewards = {a: 0 for a in self.agents}
self.terminations = {a: False for a in self.agents}
self.truncations = {a: False for a in self.agents}
self.infos = {a: {} for a in self.agents}
def seed(self, seed=None):
"""Set the seed for the environment."""
self.randomizer, seed = seeding.np_random(seed)
def reset(self, seed: Optional[int] = None, options: Optional[dict] = None):
"""Reset the environment."""
self.env.reset(seed=seed, options=options)
self.agents = self.possible_agents[:]
self.agent_selection = self._agent_selector.reset()
self.rewards = {agent: 0 for agent in self.agents}
self._cumulative_rewards = {agent: 0 for agent in self.agents}
self.terminations = {a: False for a in self.agents}
self.truncations = {a: False for a in self.agents}
self.compute_info()
def compute_info(self):
"""Compute the info for the current step."""
self.infos = {a: {} for a in self.agents}
infos = self.env._compute_info()
for a in self.agents:
for k, v in infos.items():
if k.startswith(a) or k.startswith("system"):
self.infos[a][k] = v
def observation_space(self, agent):
"""Return the observation space for the agent."""
return self.observation_spaces[agent]
def action_space(self, agent):
"""Return the action space for the agent."""
return self.action_spaces[agent]
def observe(self, agent):
"""Return the observation for the agent."""
obs = self.env.observations[agent].copy()
return obs
def close(self):
"""Close the environment and stop the SUMO simulation."""
self.env.close()
def render(self):
"""Render the environment."""
return self.env.render()
def save_csv(self, out_csv_name, episode):
"""Save metrics of the simulation to a .csv file."""
self.env.save_csv(out_csv_name, episode)
def step(self, action):
"""Step the environment."""
if self.truncations[self.agent_selection] or self.terminations[self.agent_selection]:
return self._was_dead_step(action)
agent = self.agent_selection
if not self.action_spaces[agent].contains(action):
raise Exception(
"Action for agent {} must be in Discrete({})."
"It is currently {}".format(agent, self.action_spaces[agent].n, action)
)
if not self.env.fixed_ts:
self.env._apply_actions({agent: action})
if self._agent_selector.is_last():
if not self.env.fixed_ts:
self.env._run_steps()
else:
for _ in range(self.env.delta_time):
self.env._sumo_step()
self.env._compute_observations()
self.rewards = self.env._compute_rewards()
self.compute_info()
else:
self._clear_rewards()
done = self.env._compute_dones()["__all__"]
self.truncations = {a: done for a in self.agents}
self.agent_selection = self._agent_selector.next()
self._cumulative_rewards[agent] = 0
self._accumulate_rewards()