-
Notifications
You must be signed in to change notification settings - Fork 136
/
Copy pathdata.py
104 lines (90 loc) · 4.29 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import numpy as np
import pylib as py
import tensorflow as tf
import tflib as tl
ATT_ID = {'5_o_Clock_Shadow': 0, 'Arched_Eyebrows': 1, 'Attractive': 2,
'Bags_Under_Eyes': 3, 'Bald': 4, 'Bangs': 5, 'Big_Lips': 6,
'Big_Nose': 7, 'Black_Hair': 8, 'Blond_Hair': 9, 'Blurry': 10,
'Brown_Hair': 11, 'Bushy_Eyebrows': 12, 'Chubby': 13,
'Double_Chin': 14, 'Eyeglasses': 15, 'Goatee': 16,
'Gray_Hair': 17, 'Heavy_Makeup': 18, 'High_Cheekbones': 19,
'Male': 20, 'Mouth_Slightly_Open': 21, 'Mustache': 22,
'Narrow_Eyes': 23, 'No_Beard': 24, 'Oval_Face': 25,
'Pale_Skin': 26, 'Pointy_Nose': 27, 'Receding_Hairline': 28,
'Rosy_Cheeks': 29, 'Sideburns': 30, 'Smiling': 31,
'Straight_Hair': 32, 'Wavy_Hair': 33, 'Wearing_Earrings': 34,
'Wearing_Hat': 35, 'Wearing_Lipstick': 36,
'Wearing_Necklace': 37, 'Wearing_Necktie': 38, 'Young': 39}
ID_ATT = {v: k for k, v in ATT_ID.items()}
def make_celeba_dataset(img_dir,
label_path,
att_names,
batch_size,
load_size=286,
crop_size=256,
training=True,
drop_remainder=True,
shuffle=True,
repeat=1):
img_names = np.genfromtxt(label_path, dtype=str, usecols=0)
img_paths = np.array([py.join(img_dir, img_name) for img_name in img_names])
labels = np.genfromtxt(label_path, dtype=int, usecols=range(1, 41))
labels = labels[:, np.array([ATT_ID[att_name] for att_name in att_names])]
if shuffle:
idx = np.random.permutation(len(img_paths))
img_paths = img_paths[idx]
labels = labels[idx]
if training:
def map_fn_(img, label):
img = tf.image.resize(img, [load_size, load_size])
# img = tl.random_rotate(img, 5)
img = tf.image.random_flip_left_right(img)
img = tf.image.random_crop(img, [crop_size, crop_size, 3])
# img = tl.color_jitter(img, 25, 0.2, 0.2, 0.1)
# img = tl.random_grayscale(img, p=0.3)
img = tf.clip_by_value(img, 0, 255) / 127.5 - 1
label = (label + 1) // 2
return img, label
else:
def map_fn_(img, label):
img = tf.image.resize(img, [load_size, load_size])
img = tl.center_crop(img, size=crop_size)
img = tf.clip_by_value(img, 0, 255) / 127.5 - 1
label = (label + 1) // 2
return img, label
dataset = tl.disk_image_batch_dataset(img_paths,
batch_size,
labels=labels,
drop_remainder=drop_remainder,
map_fn=map_fn_,
shuffle=shuffle,
repeat=repeat)
if drop_remainder:
len_dataset = len(img_paths) // batch_size
else:
len_dataset = int(np.ceil(len(img_paths) / batch_size))
return dataset, len_dataset
def check_attribute_conflict(att_batch, att_name, att_names):
def _set(att, value, att_name):
if att_name in att_names:
att[att_names.index(att_name)] = value
idx = att_names.index(att_name)
for att in att_batch:
if att_name in ['Bald', 'Receding_Hairline'] and att[idx] == 1:
_set(att, 0, 'Bangs')
elif att_name == 'Bangs' and att[idx] == 1:
_set(att, 0, 'Bald')
_set(att, 0, 'Receding_Hairline')
elif att_name in ['Black_Hair', 'Blond_Hair', 'Brown_Hair', 'Gray_Hair'] and att[idx] == 1:
for n in ['Black_Hair', 'Blond_Hair', 'Brown_Hair', 'Gray_Hair']:
if n != att_name:
_set(att, 0, n)
elif att_name in ['Straight_Hair', 'Wavy_Hair'] and att[idx] == 1:
for n in ['Straight_Hair', 'Wavy_Hair']:
if n != att_name:
_set(att, 0, n)
# elif att_name in ['Mustache', 'No_Beard'] and att[idx] == 1: # enable this part help to learn `Mustache`
# for n in ['Mustache', 'No_Beard']:
# if n != att_name:
# _set(att, 0, n)
return att_batch