-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract_dat.awk
executable file
·210 lines (210 loc) · 9.18 KB
/
extract_dat.awk
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
#!/usr/bin/awk -f
# This script attempts to extract $DATA section from GAMESS .dat file
# There is (very) limited symmetry handling, to produce a C1 geometry.
#
BEGIN {
infty = 1e20 ;
datline = infty ;
geostart = infty ;
geo_atom = 0 ;
geo_basis = 1 ;
geostate = geo_atom ;
symcode = "" ;
eps = 1e-3 ; # Tolerance for geometry comparison (square of the distance)
# Symmetry replication tables. The syntax of s_list[] yis a bit weird:
# First index is the symmetry label; second index is the operation index;
# The remaining two indices are just a Cartesian variable index of the transformation matrix.
#
# C1
symop_count["c1"] = 0 ;
# D2
symop_count["d2"] = 3 ;
s_list["d2",1,1,1] =-1.0 ; s_list["d2",1,1,2] = 0.0 ; s_list["d2",1,1,3] = 0.0 ;
s_list["d2",1,2,1] = 0.0 ; s_list["d2",1,2,2] =-1.0 ; s_list["d2",1,2,3] = 0.0 ;
s_list["d2",1,3,1] = 0.0 ; s_list["d2",1,3,2] = 0.0 ; s_list["d2",1,3,3] = 1.0 ;
#
s_list["d2",2,1,1] = 1.0 ; s_list["d2",2,1,2] = 0.0 ; s_list["d2",2,1,3] = 0.0 ;
s_list["d2",2,2,1] = 0.0 ; s_list["d2",2,2,2] =-1.0 ; s_list["d2",2,2,3] = 0.0 ;
s_list["d2",2,3,1] = 0.0 ; s_list["d2",2,3,2] = 0.0 ; s_list["d2",2,3,3] =-1.0 ;
#
s_list["d2",3,1,1] =-1.0 ; s_list["d2",3,1,2] = 0.0 ; s_list["d2",3,1,3] = 0.0 ;
s_list["d2",3,2,1] = 0.0 ; s_list["d2",3,2,2] = 1.0 ; s_list["d2",3,2,3] = 0.0 ;
s_list["d2",3,3,1] = 0.0 ; s_list["d2",3,3,2] = 0.0 ; s_list["d2",3,3,3] =-1.0 ;
# Cs
symop_count["cs"] = 1 ;
s_list["cs",1,1,1] = 1.0 ; s_list["cs",1,1,2] = 0.0 ; s_list["cs",1,1,3] = 0.0 ;
s_list["cs",1,2,1] = 0.0 ; s_list["cs",1,2,2] = 1.0 ; s_list["cs",1,2,3] = 0.0 ;
s_list["cs",1,3,1] = 0.0 ; s_list["cs",1,3,2] = 0.0 ; s_list["cs",1,3,3] =-1.0 ;
# C2v
symop_count["c2v"] = 3 ;
s_list["c2v",1,1,1] =-1.0 ; s_list["c2v",1,1,2] = 0.0 ; s_list["c2v",1,1,3] = 0.0 ;
s_list["c2v",1,2,1] = 0.0 ; s_list["c2v",1,2,2] =-1.0 ; s_list["c2v",1,2,3] = 0.0 ;
s_list["c2v",1,3,1] = 0.0 ; s_list["c2v",1,3,2] = 0.0 ; s_list["c2v",1,3,3] = 1.0 ;
#
s_list["c2v",2,1,1] = 1.0 ; s_list["c2v",2,1,2] = 0.0 ; s_list["c2v",2,1,3] = 0.0 ;
s_list["c2v",2,2,1] = 0.0 ; s_list["c2v",2,2,2] =-1.0 ; s_list["c2v",2,2,3] = 0.0 ;
s_list["c2v",2,3,1] = 0.0 ; s_list["c2v",2,3,2] = 0.0 ; s_list["c2v",2,3,3] = 1.0 ;
#
s_list["c2v",3,1,1] =-1.0 ; s_list["c2v",3,1,2] = 0.0 ; s_list["c2v",3,1,3] = 0.0 ;
s_list["c2v",3,2,1] = 0.0 ; s_list["c2v",3,2,2] = 1.0 ; s_list["c2v",3,2,3] = 0.0 ;
s_list["c2v",3,3,1] = 0.0 ; s_list["c2v",3,3,2] = 0.0 ; s_list["c2v",3,3,3] = 1.0 ;
# C2
symop_count["c2"] = 1 ;
s_list["c2",1,1,1] =-1.0 ; s_list["c2",1,1,2] = 0.0 ; s_list["c2",1,1,3] = 0.0 ;
s_list["c2",1,2,1] = 0.0 ; s_list["c2",1,2,2] =-1.0 ; s_list["c2",1,2,3] = 0.0 ;
s_list["c2",1,3,1] = 0.0 ; s_list["c2",1,3,2] = 0.0 ; s_list["c2",1,3,3] = 1.0 ;
# C2h
symop_count["c2h"] = 3 ;
s_list["c2h",1,1,1] =-1.0 ; s_list["c2h",1,1,2] = 0.0 ; s_list["c2h",1,1,3] = 0.0 ;
s_list["c2h",1,2,1] = 0.0 ; s_list["c2h",1,2,2] =-1.0 ; s_list["c2h",1,2,3] = 0.0 ;
s_list["c2h",1,3,1] = 0.0 ; s_list["c2h",1,3,2] = 0.0 ; s_list["c2h",1,3,3] = 1.0 ;
#
s_list["c2h",2,1,1] = 1.0 ; s_list["c2h",2,1,2] = 0.0 ; s_list["c2h",2,1,3] = 0.0 ;
s_list["c2h",2,2,1] = 0.0 ; s_list["c2h",2,2,2] = 1.0 ; s_list["c2h",2,2,3] = 0.0 ;
s_list["c2h",2,3,1] = 0.0 ; s_list["c2h",2,3,2] = 0.0 ; s_list["c2h",2,3,3] =-1.0 ;
#
s_list["c2h",3,1,1] =-1.0 ; s_list["c2h",3,1,2] = 0.0 ; s_list["c2h",3,1,3] = 0.0 ;
s_list["c2h",3,2,1] = 0.0 ; s_list["c2h",3,2,2] =-1.0 ; s_list["c2h",3,2,3] = 0.0 ;
s_list["c2h",3,3,1] = 0.0 ; s_list["c2h",3,3,2] = 0.0 ; s_list["c2h",3,3,3] =-1.0 ;
# D2h
symop_count["d2h"] = 7 ;
s_list["d2h",1,1,1] =-1.0 ; s_list["d2h",1,1,2] = 0.0 ; s_list["d2h",1,1,3] = 0.0 ;
s_list["d2h",1,2,1] = 0.0 ; s_list["d2h",1,2,2] =-1.0 ; s_list["d2h",1,2,3] = 0.0 ;
s_list["d2h",1,3,1] = 0.0 ; s_list["d2h",1,3,2] = 0.0 ; s_list["d2h",1,3,3] = 1.0 ;
#
s_list["d2h",2,1,1] = 1.0 ; s_list["d2h",2,1,2] = 0.0 ; s_list["d2h",2,1,3] = 0.0 ;
s_list["d2h",2,2,1] = 0.0 ; s_list["d2h",2,2,2] = 1.0 ; s_list["d2h",2,2,3] = 0.0 ;
s_list["d2h",2,3,1] = 0.0 ; s_list["d2h",2,3,2] = 0.0 ; s_list["d2h",2,3,3] =-1.0 ;
#
s_list["d2h",3,1,1] =-1.0 ; s_list["d2h",3,1,2] = 0.0 ; s_list["d2h",3,1,3] = 0.0 ;
s_list["d2h",3,2,1] = 0.0 ; s_list["d2h",3,2,2] =-1.0 ; s_list["d2h",3,2,3] = 0.0 ;
s_list["d2h",3,3,1] = 0.0 ; s_list["d2h",3,3,2] = 0.0 ; s_list["d2h",3,3,3] =-1.0 ;
#
s_list["d2h",4,1,1] = 1.0 ; s_list["d2h",4,1,2] = 0.0 ; s_list["d2h",4,1,3] = 0.0 ;
s_list["d2h",4,2,1] = 0.0 ; s_list["d2h",4,2,2] =-1.0 ; s_list["d2h",4,2,3] = 0.0 ;
s_list["d2h",4,3,1] = 0.0 ; s_list["d2h",4,3,2] = 0.0 ; s_list["d2h",4,3,3] =-1.0 ;
#
s_list["d2h",5,1,1] =-1.0 ; s_list["d2h",5,1,2] = 0.0 ; s_list["d2h",5,1,3] = 0.0 ;
s_list["d2h",5,2,1] = 0.0 ; s_list["d2h",5,2,2] = 1.0 ; s_list["d2h",5,2,3] = 0.0 ;
s_list["d2h",5,3,1] = 0.0 ; s_list["d2h",5,3,2] = 0.0 ; s_list["d2h",5,3,3] =-1.0 ;
#
s_list["d2h",6,1,1] = 1.0 ; s_list["d2h",6,1,2] = 0.0 ; s_list["d2h",6,1,3] = 0.0 ;
s_list["d2h",6,2,1] = 0.0 ; s_list["d2h",6,2,2] =-1.0 ; s_list["d2h",6,2,3] = 0.0 ;
s_list["d2h",6,3,1] = 0.0 ; s_list["d2h",6,3,2] = 0.0 ; s_list["d2h",6,3,3] = 1.0 ;
#
s_list["d2h",7,1,1] =-1.0 ; s_list["d2h",7,1,2] = 0.0 ; s_list["d2h",7,1,3] = 0.0 ;
s_list["d2h",7,2,1] = 0.0 ; s_list["d2h",7,2,2] = 1.0 ; s_list["d2h",7,2,3] = 0.0 ;
s_list["d2h",7,3,1] = 0.0 ; s_list["d2h",7,3,2] = 0.0 ; s_list["d2h",7,3,3] = 1.0 ;
#
}
#
# Find the start of the $DATA section
#
/^ \$DATA *$/ {
datline = NR ;
}
(NR<datline) {
next ;
}
#
# Everything below here appears after the $DATA line
#
(NR>=datline) && (NR<=datline+1) {
print ; # First two lines are simply copied to the output
next ;
}
/^ \$END *$/ {
print ; # Copy the last line, and stop processing
datline = infty ;
exit ;
}
# Symmetry line: C1 symmetry
(NR==datline+2) && (/^C1 *0 *$/||/^C1 *$/) {
symcode = "c1" ;
print ; # Copy the line
geoline = NR + 1 ; # First atom is on the next line
next ;
}
# Symmetry line: something other than C1
(NR==datline+2) {
symline = $0 ;
}
(NR==datline+2) && /^DN *2 *$/ { symcode = "d2" ; }
(NR==datline+2) && /^CS *0 *$/ { symcode = "cs" ; }
(NR==datline+2) && /^CN *2 *$/ { symcode = "c2" ; }
(NR==datline+2) && /^CNV *2 *$/ { symcode = "c2v" ; }
(NR==datline+2) && /^CNH *2 *$/ { symcode = "c2h" ; }
(NR==datline+2) && /^DNH *2 *$/ { symcode = "d2h" ; }
# General-case handling for non-C1 symmetry
(NR==datline+2) {
# Did we recognize the symmetry code?
if (symcode=="") {
printf "Can't handle symmetry '%s'\n", symline > "/dev/stderr" ;
exit (1) ;
}
print "C1" ; # Transform it to C1
geoline = NR + 2 ; # First atom starts two lines down
next ;
}
# Skip until the first geometry line
(NR<geoline) {
next ;
}
(geostate==geo_atom){
at_name = $1 ;
at_znuc = $2 ;
at_x = $3 ;
at_y = $4 ;
at_z = $5 ;
geostate=geo_basis ;
basis = "" ;
next ;
}
(geostate==geo_basis)&&/^ *$/ {
report_atom() ;
geostate=geo_atom ;
next ;
}
(geostate==geo_basis) {
basis = basis $0 "\n" ;
}
#
# Replicate atom as necessary by symmetry
#
function report_atom (nrep,irep) {
nrep = symop_count[symcode] ;
nuniq = 0 ;
for (irep=1;irep<=nrep;irep++) {
replicate_atom(irep,nuniq) ;
}
report_single_atom(at_x,at_y,at_z) ;
}
function replicate_atom (irep, rep_x,rep_y,rep_z,iuniq) {
# Apply symmetry operation to the unique atom
rep_x = s_list[symcode,irep,1,1]*at_x + s_list[symcode,irep,1,2]*at_y + s_list[symcode,irep,1,3]*at_z ;
rep_y = s_list[symcode,irep,2,1]*at_x + s_list[symcode,irep,2,2]*at_y + s_list[symcode,irep,2,3]*at_z ;
rep_z = s_list[symcode,irep,3,1]*at_x + s_list[symcode,irep,3,2]*at_y + s_list[symcode,irep,3,3]*at_z ;
# The replica must not be the same as the original atom, or any of the prior replicas
if (same_atom(at_x,at_y,at_z,rep_x,rep_y,rep_z)) return ;
for (iuniq=1;iuniq<=nuniq;iuniq++) {
if (same_atom(uniq_x[iuniq],uniq_y[iuniq],uniq_z[iuniq],rep_x,rep_y,rep_z)) return ;
}
++nuniq ;
uniq_x[nuniq] = rep_x ;
uniq_y[nuniq] = rep_y ;
uniq_z[nuniq] = rep_z ;
report_single_atom(rep_x,rep_y,rep_z) ;
}
function same_atom(x1,y1,z1,x2,y2,z2, r2) {
r2 = (x2-x1)**2 ;
r2 += (y2-y1)**2 ;
r2 += (z2-z1)**2 ;
return r2<=eps ;
}
#
# Print a single atom
#
function report_single_atom (x,y,z) {
printf "%-8s %9.6f %16.12f %16.12f %16.12f\n", at_name, at_znuc, x, y, z ;
printf "%s\n", basis ;
}