-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathVTR_Results.py
142 lines (123 loc) · 4.39 KB
/
VTR_Results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
from keras.models import model_from_json
import numpy as np
import csv
import math
model = model_from_json(open('model.json').read())
model.load_weights('weights.h5')
data_dir = ""
X_test = np.load(data_dir+'VTR_test_X.npy')
Y = np.load(data_dir+'VTR_test_Y.npy')
names = Y[:, :1]
Y_test = Y[:,1:]
predictions = []
loss1 = 0.0
loss2 = 0.0
loss3 = 0.0
loss4 = 0.0
max_1 = 0.0
max_2 = 0.0
max_3 = 0.0
max_4 = 0.0
list_1 = []
list_2 = []
list_3 = []
list_4 = []
male = [0.0, 0.0, 0.0, 0.0, 0.0, [], [], [], []]
female = [0.0, 0.0, 0.0, 0.0, 0.0, [], [], [], []]
karma_list = [0, 0.0, 0.0, 0.0, 0.0]
AVG_list = [0, 0.0, 0.0, 0.0, 0.0]
y_hat = model.predict(X_test)
for i in range(0,len(Y_test)):
l1 = np.abs(float(Y_test[i, 0]) - y_hat[i, 0])
l2 = np.abs(float(Y_test[i, 1]) - y_hat[i, 1])
l3 = np.abs(float(Y_test[i, 2]) - y_hat[i, 2])
l4 = np.abs(float(Y_test[i, 3]) - y_hat[i, 3])
pred = [names[i][0], float(Y_test[i, 0]), float(Y_test[i, 1]), float(Y_test[i, 2]), float(Y_test[i, 3])]
AVG_list[0] += 1
AVG_list[1] += float(Y_test[i, 0]) - y_hat[i, 0]
AVG_list[2] += float(Y_test[i, 1]) - y_hat[i, 1]
AVG_list[3] += float(Y_test[i, 2]) - y_hat[i, 2]
AVG_list[4] += float(Y_test[i, 3]) - y_hat[i, 3]
pred.extend([y_hat[i, 0], y_hat[i, 1], y_hat[i, 2], y_hat[i, 3]])
if names[i][0].split('_')[3][0] == 'f':
female[0] += 1
female[1] += l1
female[2] += l2
female[3] += l3
female[4] += l4
female[5].append(l1)
female[6].append(l2)
female[7].append(l3)
female[8].append(l4)
elif names[i][0].split('_')[3][0] == 'm':
male[0] += 1
male[1] += l1
male[2] += l2
male[3] += l3
male[4] += l4
male[5].append(l1)
male[6].append(l2)
male[7].append(l3)
male[8].append(l4)
predictions.append(pred)
list_1.append(l1)
list_2.append(l2)
list_3.append(l3)
list_4.append(l4)
max_1 = max(max_1,l1)
max_2 = max(max_2,l2)
max_3 = max(max_3,l3)
max_4 = max(max_4,l4)
loss1 += l1
loss2 += l2
loss3 += l3
loss4 += l4
karma_list[0] += 1
karma_list[1] += l1 * l1
karma_list[2] += l2 * l2
karma_list[3] += l3 * l3
karma_list[4] += l4 * l4
loss1 /= len(Y_test)
loss2 /= len(Y_test)
loss3 /= len(Y_test)
loss4 /= len(Y_test)
total_loss = loss1+loss2+loss3+loss4
total_loss /= 4.0
print('standard deviation', round(np.std(list_1)*1000, 2), round(np.std(list_2)*1000, 2), round(np.std(list_3)*1000, 2), round(np.std(list_4)*1000, 2))
print('median', round(np.median(list_1)*1000, 2), round(np.median(list_2)*1000, 2), round(np.median(list_3)*1000, 2), round(np.median(list_4)*1000, 2))
print('max loss ', round(max_1*1000, 2), round(max_2*1000, 2), round(max_3*1000, 2), round(max_4*1000, 2))
print('total loss ', round(total_loss*1000, 2))
print('Real test score:', round(loss1*1000, 2), round(loss2*1000, 2), round(loss3*1000, 2), round(loss4*1000, 2))
female[1] = round((female[1] / female[0])*1000, 2)
female[2] = round((female[2] / female[0])*1000, 2)
female[3] = round((female[3] / female[0])*1000, 2)
female[4] = round((female[4] / female[0])*1000, 2)
female[5] = round(np.std(female[5])*1000, 2)
female[6] = round(np.std(female[6])*1000, 2)
female[7] = round(np.std(female[7])*1000, 2)
female[8] = round(np.std(female[8])*1000, 2)
male[1] = round((male[1] / male[0])*1000, 2)
male[2] = round((male[2] / male[0])*1000, 2)
male[3] = round((male[3] / male[0])*1000, 2)
male[4] = round((male[4] / male[0])*1000, 2)
male[5] = round(np.std(male[5])*1000, 2)
male[6] = round(np.std(male[6])*1000, 2)
male[7] = round(np.std(male[7])*1000, 2)
male[8] = round(np.std(male[8])*1000, 2)
print("male: ", male)
print("female: ", female)
# karma
karma_list[1] /= karma_list[0]
karma_list[2] /= karma_list[0]
karma_list[3] /= karma_list[0]
karma_list[4] /= karma_list[0]
print('root mean squared error ', round(math.sqrt(karma_list[1]) * 1000, 2), round(math.sqrt(karma_list[2]) * 1000, 2),
round(math.sqrt(karma_list[3]) * 1000, 2), round(math.sqrt(karma_list[4]) * 1000, 2))
AVG_list[1] /= AVG_list[0]
AVG_list[2] /= AVG_list[0]
AVG_list[3] /= AVG_list[0]
AVG_list[4] /= AVG_list[0]
print('AVG ', round(AVG_list[1] * 1000, 2), round(AVG_list[2] * 1000, 2), round(AVG_list[3] * 1000, 2), round(AVG_list[4] * 1000, 2))
with open("results/VTR.csv", "wb") as f:
writer = csv.writer(f)
writer.writerows(predictions)