-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathspectrogramEstimate.py
141 lines (120 loc) · 4.25 KB
/
spectrogramEstimate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
from __future__ import print_function, division
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.nn.functional as F
from torch import optim
import numpy as np
torch.manual_seed(1)
trainY = np.load("norm_cnn_timit_train_Y.npy")
testY = np.load("norm_cnn_timit_test_Y.npy")
Xtrain = np.load("norm_cnn_timit_train_X.npy").astype(np.float32)
Ytrain = trainY[:,1:5].astype(np.float32)
Xtest = np.load("norm_cnn_timit_test_X.npy").astype(np.float32)
Ytest = testY[:,1:5].astype(np.float32)
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
D = Xtrain.shape[1]
K = len(Ytrain)
print(D, K)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.Conv1 = nn.Conv2d(in_channels=1, out_channels=96, kernel_size=(3, 3), stride=1, padding=0)
self.Conv2 = nn.Conv2d(in_channels=96, out_channels=32, kernel_size=(3, 3), stride=1, padding=0)
self.Conv3 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=(3, 3), stride=1, padding=0)
self.Conv4 = nn.Conv2d(in_channels=64, out_channels=64, kernel_size=(5, 5), stride=1, padding=0)
self.Dense5 = nn.Linear(43*38*64, 512)
self.out = nn.Linear(512, 4)
def forward(self, x):
in_size = x.size(0)
x = F.relu(self.Conv1(x))
x = F.relu(self.Conv2(x))
x = F.max_pool2d(x, kernel_size=2, stride=1)
x = F.relu(self.Conv3(x))
x = F.relu(self.Conv4(x))
x = F.max_pool2d(x, kernel_size=2, stride=1)
#print(in_size)
x = x.view(x.size(0), -1)
x = F.relu(self.Dense5(x))
return self.out(x)
def train(model, loss, optimizer, inputs, labels):
inputs = Variable(inputs.to(device))
labels = Variable(labels.to(device))
optimizer.zero_grad()
logits = model.forward(inputs)
output = loss.forward(logits, labels)
output.backward()
optimizer.step()
return output.item()
def predict(model, inputs):
inputs = Variable(inputs)
with torch.no_grad():
logits = model.forward(inputs.to(device))
return logits.data.cpu().numpy()
Xtrain = torch.from_numpy(Xtrain).float().to(device)
Ytrain = torch.from_numpy(Ytrain).float().to(device)
Xtest = torch.from_numpy(Xtest).float().to(device)
Ytest = torch.from_numpy(Ytest).float().to(device)
model = Net().to(device)
loss = nn.L1Loss()
optimizer = optim.Adagrad(model.parameters())
epochs = 80
batchSize = 32
n_batches = int(np.floor(Xtrain.size()[0]/batchSize))
costs = []
test_accuracies = []
print("Starting training ")
for i in range(epochs):
cost = 0.0
for j in range(n_batches):
#print(j, '/', n_batches)
Xbatch = Xtrain[j*batchSize:(j+1)*batchSize]
Ybatch = Ytrain[j*batchSize:(j+1)*batchSize]
cost += train(model, loss, optimizer, Xbatch, Ybatch)
loss1 = 0.0
loss2 = 0.0
loss3 = 0.0
loss4 = 0.0
max_1 = 0.0
max_2 = 0.0
max_3 = 0.0
max_4 = 0.0
list_1 = []
list_2 = []
list_3 = []
list_4 = []
print('predicting...')
Ypred = predict(model, Xtest)
for k in range(0, len(Ytest)):
# print(y_hat[i])
l1 = np.abs(float(Ytest[k, 0]) - Ypred[k, 0])
l2 = np.abs(float(Ytest[k, 1]) - Ypred[k, 1])
l3 = np.abs(float(Ytest[k, 2]) - Ypred[k, 2])
l4 = np.abs(float(Ytest[k, 3]) - Ypred[k, 3])
list_1.append(l1)
list_2.append(l2)
list_3.append(l3)
list_4.append(l4)
max_1 = max(max_1, l1)
max_2 = max(max_2, l2)
max_3 = max(max_3, l3)
max_4 = max(max_4, l4)
loss1 += l1
loss2 += l2
loss3 += l3
loss4 += l4
loss1 /= len(Ytest)
loss2 /= len(Ytest)
loss3 /= len(Ytest)
loss4 /= len(Ytest)
total_loss = loss1 + loss2 + loss3 + loss4
total_loss /= 4.0
print('median: %.3f %.3f %.3f %.3f' % (np.median(list_1), np.median(list_2), np.median(list_3), np.median(list_4)))
print('max loss: %.3f %.3f %.3f %.3f' % (max_1, max_2, max_3, max_4))
print('Real test score: %.3f %.3f %.3f %.3f' % (loss1, loss2, loss3, loss4))
print("Epoch: %d, acc: %.3f" % (i, total_loss))
costs.append(cost/n_batches)
test_accuracies.append(round(total_loss, 3))
torch.save(model.state_dict(), "CNN_estimate.pt")
print(test_accuracies)