-
Notifications
You must be signed in to change notification settings - Fork 169
/
Copy pathdilation.py
87 lines (70 loc) · 3.88 KB
/
dilation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
from models.basic.basic_model import BasicModel
from models.encoders.VGG import VGG16
from layers.convolution import conv2d_transpose, conv2d, atrous_conv2d
from layers.dense import load_dense_layer
import tensorflow as tf
class Dilation(BasicModel):
"""
FCN8s Model Architecture
"""
def __init__(self, args, phase=0):
super().__init__(args, phase=phase)
# init encoder
self.encoder = None
# layers
self.conv5_3_dil = None
self.fc6_dil = None
self.fc7 = None
self.score_fr = None
self.upscore8 = None
def build(self):
print("\nBuilding the MODEL...")
self.init_input()
self.init_network()
self.init_output()
self.init_train()
self.init_summaries()
print("The Model is built successfully\n")
def init_network(self):
"""
Building the Network here
:return:
"""
# Init a VGG16 as an encoder
self.encoder = VGG16(x_input=self.x_pl,
num_classes=self.params.num_classes,
pretrained_path=self.args.pretrained_path,
train_flag=self.is_training,
reduced_flag=False,
weight_decay=self.args.weight_decay)
# Build Encoding part
self.encoder.build()
# Build Decoding part
with tf.name_scope('dilation_2'):
self.conv4_3_dil = conv2d('conv4_3_dil', x=self.encoder.conv4_2, num_filters=512,
kernel_size=(3, 3), activation= tf.nn.relu,
l2_strength=self.encoder.wd, is_training=self.is_training )
self.conv5_1_dil = atrous_conv2d('conv5_1_dil', x=self.conv4_3_dil, num_filters=512,
kernel_size=(3, 3), dilation_rate=2, activation=tf.nn.relu,
l2_strength=self.encoder.wd, is_training=self.is_training)
self.conv5_2_dil = atrous_conv2d('conv5_2_dil', x=self.conv5_1_dil, num_filters=512,
kernel_size=(3, 3), dilation_rate=2, activation=tf.nn.relu,
l2_strength=self.encoder.wd, is_training=self.is_training)
self.conv5_3_dil = atrous_conv2d('conv5_3_dil', x=self.conv5_2_dil, num_filters=512,
kernel_size=(3, 3), dilation_rate=2, activation=tf.nn.relu,
l2_strength=self.encoder.wd, is_training=self.is_training)
self.fc6_dil = atrous_conv2d('fc6_dil', x=self.conv5_3_dil, num_filters=1024,
kernel_size=(7, 7), dilation_rate=4, activation=tf.nn.relu,
l2_strength=self.encoder.wd, dropout_keep_prob=0.5,
is_training=self.is_training)
self.fc7_dil = conv2d('fc7_dil', x=self.fc6_dil, num_filters=1024,
kernel_size=(1, 1), activation= tf.nn.relu, dropout_keep_prob=0.5,
l2_strength=self.encoder.wd, is_training=self.is_training )
self.score_fr = conv2d('score_fr_dil', x=self.fc7_dil, num_filters=self.params.num_classes,
kernel_size=(1, 1), l2_strength=self.encoder.wd,
is_training=self.is_training )
with tf.name_scope('upscore_8s'):
self.upscore8 = conv2d_transpose('upscore8', x=self.score_fr,
output_shape=self.x_pl.shape.as_list()[0:3] + [self.params.num_classes],
kernel_size=(16, 16), stride=(8, 8), l2_strength=self.encoder.wd)
self.logits = self.upscore8