-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathInputReader.java
550 lines (462 loc) · 19.5 KB
/
InputReader.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
/**
* A very fast input reader to read data from any InputStream (System.in in particular).
* I primarily use this input reader for competitive programming to get an edge on the
* time required to read input. That being said, this input reader assumes you know what
* data types you are reading in and will not do any validation of input whatsoever!
*
* @author William Fiset, [email protected]
**/
// package com.williamfiset.fastjavaio;
import java.io.InputStream;
import java.io.IOException;
public class InputReader {
/**
* The default size of the InputReader's buffer is 2<sup>16</sup>.
*/
private static final int DEFAULT_BUFFER_SIZE = 1 << 16;
/**
* The default stream for the InputReader is standard input.
*/
private static final InputStream DEFAULT_STREAM = System.in;
/**
* The maximum number of accurate decimal digits the method {@link #nextDoubleFast() nextDoubleFast()} can read.
* Currently this value is set to 21 because it is the maximum number of digits a double precision float can have at the moment.
*/
private static final int MAX_DECIMAL_PRECISION = 21;
// 'c' is used to refer to the current character in the stream
private int c;
// Variables associated with the byte buffer.
private byte[] buf;
private int bufferSize, bufIndex, numBytesRead;
private InputStream stream;
// End Of File (EOF) character
private static final byte EOF = -1;
// New line character: '\n'
private static final byte NEW_LINE = 10;
// Space character: ' '
private static final byte SPACE = 32;
// Dash character: '-'
private static final byte DASH = 45;
// Dot character: '.'
private static final byte DOT = 46;
// A reusable character buffer when reading string data.
private char[] charBuffer;
// Primitive data type lookup tables used for optimizations
private static byte[] bytes = new byte[58];
private static int[] ints = new int[58];
private static char[] chars = new char[128];
static {
char ch = ' '; int value = 0; byte _byte = 0;
for (int i = 48; i < 58; i++ ) bytes[i] = _byte++;
for (int i = 48; i < 58; i++ ) ints[i] = value++;
for (int i = 32; i < 128; i++ ) chars[i] = ch++;
}
// Primitive double lookup table used for optimizations.
private static final double[][] doubles = {
{ 0.0d,0.00d,0.000d,0.0000d,0.00000d,0.000000d,0.0000000d,0.00000000d,0.000000000d,0.0000000000d,0.00000000000d,0.000000000000d,0.0000000000000d,0.00000000000000d,0.000000000000000d,0.0000000000000000d,0.00000000000000000d,0.000000000000000000d,0.0000000000000000000d,0.00000000000000000000d,0.000000000000000000000d },
{ 0.1d,0.01d,0.001d,0.0001d,0.00001d,0.000001d,0.0000001d,0.00000001d,0.000000001d,0.0000000001d,0.00000000001d,0.000000000001d,0.0000000000001d,0.00000000000001d,0.000000000000001d,0.0000000000000001d,0.00000000000000001d,0.000000000000000001d,0.0000000000000000001d,0.00000000000000000001d,0.000000000000000000001d },
{ 0.2d,0.02d,0.002d,0.0002d,0.00002d,0.000002d,0.0000002d,0.00000002d,0.000000002d,0.0000000002d,0.00000000002d,0.000000000002d,0.0000000000002d,0.00000000000002d,0.000000000000002d,0.0000000000000002d,0.00000000000000002d,0.000000000000000002d,0.0000000000000000002d,0.00000000000000000002d,0.000000000000000000002d },
{ 0.3d,0.03d,0.003d,0.0003d,0.00003d,0.000003d,0.0000003d,0.00000003d,0.000000003d,0.0000000003d,0.00000000003d,0.000000000003d,0.0000000000003d,0.00000000000003d,0.000000000000003d,0.0000000000000003d,0.00000000000000003d,0.000000000000000003d,0.0000000000000000003d,0.00000000000000000003d,0.000000000000000000003d },
{ 0.4d,0.04d,0.004d,0.0004d,0.00004d,0.000004d,0.0000004d,0.00000004d,0.000000004d,0.0000000004d,0.00000000004d,0.000000000004d,0.0000000000004d,0.00000000000004d,0.000000000000004d,0.0000000000000004d,0.00000000000000004d,0.000000000000000004d,0.0000000000000000004d,0.00000000000000000004d,0.000000000000000000004d },
{ 0.5d,0.05d,0.005d,0.0005d,0.00005d,0.000005d,0.0000005d,0.00000005d,0.000000005d,0.0000000005d,0.00000000005d,0.000000000005d,0.0000000000005d,0.00000000000005d,0.000000000000005d,0.0000000000000005d,0.00000000000000005d,0.000000000000000005d,0.0000000000000000005d,0.00000000000000000005d,0.000000000000000000005d },
{ 0.6d,0.06d,0.006d,0.0006d,0.00006d,0.000006d,0.0000006d,0.00000006d,0.000000006d,0.0000000006d,0.00000000006d,0.000000000006d,0.0000000000006d,0.00000000000006d,0.000000000000006d,0.0000000000000006d,0.00000000000000006d,0.000000000000000006d,0.0000000000000000006d,0.00000000000000000006d,0.000000000000000000006d },
{ 0.7d,0.07d,0.007d,0.0007d,0.00007d,0.000007d,0.0000007d,0.00000007d,0.000000007d,0.0000000007d,0.00000000007d,0.000000000007d,0.0000000000007d,0.00000000000007d,0.000000000000007d,0.0000000000000007d,0.00000000000000007d,0.000000000000000007d,0.0000000000000000007d,0.00000000000000000007d,0.000000000000000000007d },
{ 0.8d,0.08d,0.008d,0.0008d,0.00008d,0.000008d,0.0000008d,0.00000008d,0.000000008d,0.0000000008d,0.00000000008d,0.000000000008d,0.0000000000008d,0.00000000000008d,0.000000000000008d,0.0000000000000008d,0.00000000000000008d,0.000000000000000008d,0.0000000000000000008d,0.00000000000000000008d,0.000000000000000000008d },
{ 0.9d,0.09d,0.009d,0.0009d,0.00009d,0.000009d,0.0000009d,0.00000009d,0.000000009d,0.0000000009d,0.00000000009d,0.000000000009d,0.0000000000009d,0.00000000000009d,0.000000000000009d,0.0000000000000009d,0.00000000000000009d,0.000000000000000009d,0.0000000000000000009d,0.00000000000000000009d,0.000000000000000000009d }
};
/**
* Create an InputReader that reads from standard input.
*/
public InputReader () {
this(DEFAULT_STREAM, DEFAULT_BUFFER_SIZE);
}
/**
* Create an InputReader that reads from standard input.
* @param bufferSize The buffer size for this input reader.
*/
public InputReader(int bufferSize) {
this(DEFAULT_STREAM, bufferSize);
}
/**
* Create an InputReader that reads from standard input.
* @param stream Takes an InputStream as a parameter to read from.
*/
public InputReader(InputStream stream) {
this(stream, DEFAULT_BUFFER_SIZE);
}
/**
* Create an InputReader that reads from standard input.
* @param stream Takes an {@link java.io.InputStream#InputStream() InputStream} as a parameter to read from.
* @param bufferSize The size of the buffer to use.
*/
public InputReader (InputStream stream, int bufferSize) {
if (stream == null || bufferSize <= 0)
throw new IllegalArgumentException();
buf = new byte[bufferSize];
charBuffer = new char[128];
this.bufferSize = bufferSize;
this.stream = stream;
}
/**
* Reads a single character from the input stream.
* @return Returns the byte value of the next character in the buffer and EOF
* at the end of the stream.
* @throws IOException throws exception if there is no more data to read
*/
private byte read() throws IOException {
if (numBytesRead == EOF) throw new IOException();
if (bufIndex >= numBytesRead) {
bufIndex = 0;
numBytesRead = stream.read(buf);
if (numBytesRead == EOF)
return EOF;
}
return buf[bufIndex++];
}
/**
* Read values from the input stream until you reach a character with a
* higher ASCII value than 'token'.
* @param token The token is a value which we use to stop reading junk out of
* the stream.
* @return Returns 0 if a value greater than the token was reached or -1 if
* the end of the stream was reached.
* @throws IOException Throws exception at end of stream.
*/
private int readJunk(int token) throws IOException {
if (numBytesRead == EOF) return EOF;
// Seek to the first valid position index
do {
while(bufIndex < numBytesRead) {
if (buf[bufIndex] > token) return 0;
bufIndex++;
}
// reload buffer
numBytesRead = stream.read(buf);
if (numBytesRead == EOF) return EOF;
bufIndex = 0;
} while(true);
}
/**
* Reads a single byte from the input stream.
* @return The next byte in the input stream
* @throws IOException Throws exception at end of stream.
*/
public byte nextByte() throws IOException {
return (byte) nextInt();
}
/**
* Reads a 32 bit signed integer from input stream.
* @return The next integer value in the stream.
* @throws IOException Throws exception at end of stream.
*/
public int nextInt() throws IOException {
if (readJunk(DASH-1) == EOF) throw new IOException();
int sgn = 1, res = 0;
c = buf[bufIndex];
if (c == DASH) { sgn = -1; bufIndex++; }
do {
while(bufIndex < numBytesRead) {
if (buf[bufIndex] > SPACE) {
res = (res<<3)+(res<<1);
res += ints[buf[bufIndex++]];
} else {
bufIndex++;
return res*sgn;
}
}
// Reload buffer
numBytesRead = stream.read(buf);
if (numBytesRead == EOF) return res*sgn;
bufIndex = 0;
} while(true);
}
/**
* Reads a 64 bit signed long from input stream.
* @return The next long value in the stream.
* @throws IOException Throws exception at end of stream.
*/
public long nextLong() throws IOException {
if (readJunk(DASH-1) == EOF) throw new IOException();
int sgn = 1;
long res = 0L;
c = buf[bufIndex];
if (c == DASH) { sgn = -1; bufIndex++; }
do {
while(bufIndex < numBytesRead) {
if (buf[bufIndex] > SPACE) {
res = (res<<3)+(res<<1);
res += ints[buf[bufIndex++]];
} else {
bufIndex++;
return res*sgn;
}
}
// Reload buffer
numBytesRead = stream.read(buf);
if (numBytesRead == EOF) return res*sgn;
bufIndex = 0;
} while(true);
}
/**
* Doubles the size of the internal char buffer for strings
*/
private void doubleCharBufferSize() {
char[] newBuffer = new char[charBuffer.length << 1];
for(int i = 0; i < charBuffer.length; i++) newBuffer[i] = charBuffer[i];
charBuffer = newBuffer;
}
/**
* Reads a line from the input stream.
* @return Returns a line from the input stream in the form a String not
* including the new line character. Returns <code>null</code> when there are
* no more lines.
* @throws IOException Throws IOException when something terrible happens.
*/
public String nextLine() throws IOException {
try { c=read(); } catch (IOException e) { return null; }
if (c == NEW_LINE) return ""; // Empty line
if (c == EOF) return null; // EOF
int i = 0;
charBuffer[i++] = (char)c;
do {
while(bufIndex < numBytesRead) {
if (buf[bufIndex] != NEW_LINE) {
if (i == charBuffer.length) doubleCharBufferSize();
charBuffer[i++] = (char) buf[bufIndex++];
} else {
bufIndex++;
return new String(charBuffer, 0, i);
}
}
// Reload buffer
numBytesRead = stream.read(buf);
if (numBytesRead == EOF)
return new String(charBuffer, 0, i);
bufIndex = 0;
} while(true);
}
// Reads a string of characters from the input stream.
// The delimiter separating a string of characters is set to be:
// any ASCII value <= 32 meaning any spaces, new lines, EOF, tabs...
public String nextString() throws IOException {
if (numBytesRead == EOF) return null;
if (readJunk(SPACE) == EOF) return null;
for(int i = 0;;) {
while(bufIndex < numBytesRead) {
if (buf[bufIndex] > SPACE) {
if (i == charBuffer.length) doubleCharBufferSize();
charBuffer[i++] = (char) buf[bufIndex++];
} else {
bufIndex++;
return new String(charBuffer, 0, i);
}
}
// Reload buffer
numBytesRead = stream.read(buf);
if (numBytesRead == EOF) return new String(charBuffer, 0, i);
bufIndex = 0;
}
}
// Returns an exact value a double value from the input stream.
public double nextDouble() throws IOException {
String doubleVal = nextString();
if (doubleVal == null) throw new IOException();
return Double.valueOf(doubleVal);
}
// Very quickly reads a double value from the input stream (~3x faster than nextDouble()). However,
// this method may provide a slightly less accurate reading than .nextDouble() if there are a lot
// of digits (~16+). In particular, it will only read double values with at most 21 digits after
// the decimal point and the reading my be as inaccurate as ~5*10^-16 from the true value.
public double nextDoubleFast() throws IOException {
c = read(); int sgn = 1;
while (c <= SPACE) c = read(); // while c is either: ' ', '\n', EOF
if (c == DASH) { sgn = -1; c = read(); }
double res = 0.0;
// while c is not: ' ', '\n', '.' or -1
while (c > DOT) {res *= 10.0; res += ints[c]; c = read(); }
if (c == DOT) {
int i = 0; c = read();
// while c is digit and we are less than the maximum decimal precision
while (c > SPACE && i < MAX_DECIMAL_PRECISION) {
res += doubles[ints[c]][i++]; c = read();
}
}
return res * sgn;
}
// Read an array of n byte values
public byte[] nextByteArray(int n) throws IOException {
byte[] ar = new byte[n];
for (int i = 0; i < n; i++) ar[i] = nextByte();
return ar;
}
// Read an integer array of size n
public int[] nextIntArray(int n) throws IOException {
int[] ar = new int[n];
for (int i = 0; i < n; i++) ar[i] = nextInt();
return ar;
}
// Read a long array of size n
public long[] nextLongArray(int n) throws IOException {
long[] ar = new long[n];
for (int i = 0; i < n; i++) ar[i] = nextLong();
return ar;
}
// read an of doubles of size n
public double[] nextDoubleArray(int n) throws IOException {
double[] ar = new double[n];
for (int i = 0; i < n; i++) ar[i] = nextDouble();
return ar;
}
// Quickly read an array of doubles
public double[] nextDoubleArrayFast(int n) throws IOException {
double[] ar = new double[n];
for (int i = 0; i < n; i++) ar[i] = nextDoubleFast();
return ar;
}
// Read a string array of size n
public String[] nextStringArray(int n) throws IOException {
String[] ar = new String[n];
for (int i = 0; i < n; i++) {
String str = nextString();
if (str == null) throw new IOException();
ar[i] = str;
}
return ar;
}
// Read a 1-based byte array of size n+1
public byte[] nextByteArray1(int n) throws IOException {
byte[] ar = new byte[n+1];
for (int i = 1; i <= n; i++) ar[i] = nextByte();
return ar;
}
// Read a 1-based integer array of size n+1
public int[] nextIntArray1(int n) throws IOException {
int[] ar = new int[n+1];
for (int i = 1; i <= n; i++) ar[i] = nextInt();
return ar;
}
// Read a 1-based long array of size n+1
public long[] nextLongArray1(int n) throws IOException {
long[] ar = new long[n+1];
for (int i = 1; i <= n; i++) ar[i] = nextLong();
return ar;
}
// Read a 1-based double array of size n+1
public double[] nextDoubleArray1(int n) throws IOException {
double[] ar = new double[n+1];
for (int i = 1; i <= n; i++) ar[i] = nextDouble();
return ar;
}
// Quickly read a 1-based double array of size n+1
public double[] nextDoubleArrayFast1(int n) throws IOException {
double[] ar = new double[n+1];
for (int i = 1; i <= n; i++) ar[i] = nextDoubleFast();
return ar;
}
// Read a 1-based string array of size n+1
public String[] nextStringArray1(int n) throws IOException {
String[] ar = new String[n+1];
for (int i = 1; i <= n; i++) ar[i] = nextString();
return ar;
}
// Read a two dimensional matrix of bytes of size rows x cols
public byte[][] nextByteMatrix(int rows, int cols) throws IOException {
byte[][] matrix = new byte[rows][cols];
for(int i = 0; i < rows; i++)
for (int j = 0; j < cols; j++)
matrix[i][j] = nextByte();
return matrix;
}
// Read a two dimensional matrix of ints of size rows x cols
public int[][] nextIntMatrix(int rows, int cols) throws IOException {
int[][] matrix = new int[rows][cols];
for(int i = 0; i < rows; i++)
for (int j = 0; j < cols; j++)
matrix[i][j] = nextInt();
return matrix;
}
// Read a two dimensional matrix of longs of size rows x cols
public long[][] nextLongMatrix(int rows, int cols) throws IOException {
long[][] matrix = new long[rows][cols];
for(int i = 0; i < rows; i++)
for (int j = 0; j < cols; j++)
matrix[i][j] = nextLong();
return matrix;
}
// Read a two dimensional matrix of doubles of size rows x cols
public double[][] nextDoubleMatrix(int rows, int cols) throws IOException {
double[][] matrix = new double[rows][cols];
for(int i = 0; i < rows; i++)
for (int j = 0; j < cols; j++)
matrix[i][j] = nextDouble();
return matrix;
}
// Quickly read a two dimensional matrix of doubles of size rows x cols
public double[][] nextDoubleMatrixFast(int rows, int cols) throws IOException {
double[][] matrix = new double[rows][cols];
for(int i = 0; i < rows; i++)
for (int j = 0; j < cols; j++)
matrix[i][j] = nextDoubleFast();
return matrix;
}
// Read a two dimensional matrix of Strings of size rows x cols
public String[][] nextStringMatrix(int rows, int cols) throws IOException {
String[][] matrix = new String[rows][cols];
for(int i = 0; i < rows; i++)
for (int j = 0; j < cols; j++)
matrix[i][j] = nextString();
return matrix;
}
// Read a 1-based two dimensional matrix of bytes of size rows x cols
public byte[][] nextByteMatrix1(int rows, int cols) throws IOException {
byte[][] matrix = new byte[rows+1][cols+1];
for(int i = 1; i <= rows; i++)
for (int j = 1; j <= cols; j++)
matrix[i][j] = nextByte();
return matrix;
}
// Read a 1-based two dimensional matrix of ints of size rows x cols
public int[][] nextIntMatrix1(int rows, int cols) throws IOException {
int[][] matrix = new int[rows+1][cols+1];
for(int i = 1; i <= rows; i++)
for (int j = 1; j <= cols; j++)
matrix[i][j] = nextInt();
return matrix;
}
// Read a 1-based two dimensional matrix of longs of size rows x cols
public long[][] nextLongMatrix1(int rows, int cols) throws IOException {
long[][] matrix = new long[rows+1][cols+1];
for(int i = 1; i <= rows; i++)
for (int j = 1; j <= cols; j++)
matrix[i][j] = nextLong();
return matrix;
}
// Read a 1-based two dimensional matrix of doubles of size rows x cols
public double[][] nextDoubleMatrix1(int rows, int cols) throws IOException {
double[][] matrix = new double[rows+1][cols+1];
for(int i = 1; i <= rows; i++)
for (int j = 1; j <= cols; j++)
matrix[i][j] = nextDouble();
return matrix;
}
// Quickly read a 1-based two dimensional matrix of doubles of size rows x cols
public double[][] nextDoubleMatrixFast1(int rows, int cols) throws IOException {
double[][] matrix = new double[rows+1][cols+1];
for(int i = 1; i <= rows; i++)
for (int j = 1; j <= cols; j++)
matrix[i][j] = nextDoubleFast();
return matrix;
}
// Read a 1-based two dimensional matrix of Strings of size rows x cols
public String[][] nextStringMatrix1(int rows, int cols) throws IOException {
String[][] matrix = new String[rows+1][cols+1];
for(int i = 1; i <= rows; i++)
for (int j = 1; j <= cols; j++)
matrix[i][j] = nextString();
return matrix;
}
// Closes the input stream
public void close() throws IOException {
stream.close();
}
}