-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathutils.py
227 lines (202 loc) · 8.52 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import os
import logging
import numpy as np
from numpy import all, uint8
import pandas as pd
import matplotlib as mpl
from keras import backend as K
mpl.use('Agg')
import matplotlib.pyplot as plt
def flatten(l):
return [item for sublist in l for item in sublist]
def set_params(params, mode, gamma=None, lr=None, folder_name=None):
if mode == 'dqn':
params['gamma'] = .85
params['learning_rate'] = .0005
params['remove_features'] = False
params['use_mean'] = False
params['use_hra'] = False
elif mode == 'dqn+1':
params['gamma'] = .85
params['learning_rate'] = .0005
params['remove_features'] = True
params['use_mean'] = False
params['use_hra'] = False
elif mode == 'hra':
params['gamma'] = .99
params['learning_rate'] = .001
params['remove_features'] = False
params['use_mean'] = True
params['use_hra'] = True
elif mode == 'hra+1':
params['gamma'] = .99
params['learning_rate'] = .001
params['remove_features'] = True
params['use_mean'] = True
params['use_hra'] = True
if gamma is not None:
params['gamma'] = gamma
params['learning_rate'] = lr
if folder_name is None:
params['folder_name'] = mode + '__g' + str(params['gamma']) + '__lr' + str(params['learning_rate']) + '__'
else:
params['folder_name'] = folder_name
return params
def slice_tensor_tensor(tensor, tensor_slice):
"""
Theano and tensorflow differ in the method of extracting the value of the actions taken
arg1: the tensor to be slice i.e Q(s)
arg2: the indices to slice by ie a
"""
if K.backend() == 'theano':
output = tensor[K.T.arange(tensor_slice.shape[0]), tensor_slice]
elif K.backend() == 'tensorflow':
amask = K.tf.one_hot(tensor_slice, tensor.get_shape()[1], 1.0, 0.0)
output = K.tf.reduce_sum(tensor * amask, reduction_indices=1)
else:
raise Exception("Not using theano or tensor flow as backend")
return output
def plot(data={}, loc="visualization.pdf", x_label="", y_label="", title="", kind='line',
legend=True, index_col=None, clip=None, moving_average=False):
if all([len(data[key]) > 1 for key in data]):
if moving_average:
smoothed_data = {}
for key in data:
smooth_scores = [np.mean(data[key][max(0, i - 10):i + 1]) for i in range(len(data[key]))]
smoothed_data['smoothed_' + key] = smooth_scores
smoothed_data[key] = data[key]
data = smoothed_data
df = pd.DataFrame(data=data)
ax = df.plot(kind=kind, legend=legend, ylim=clip)
ax.set_xlabel(x_label)
ax.set_ylabel(y_label)
ax.set_title(title)
plt.tight_layout()
plt.savefig(loc)
plt.close()
def write_to_csv(data={}, loc="data.csv"):
if all([len(data[key]) > 1 for key in data]):
df = pd.DataFrame(data=data)
df.to_csv(loc)
def plot_and_write(plot_dict, loc, x_label="", y_label="", title="", kind='line', legend=True,
moving_average=False):
for key in plot_dict:
plot(data={key: plot_dict[key]}, loc=loc + ".pdf", x_label=x_label, y_label=y_label, title=title,
kind=kind, legend=legend, index_col=None, moving_average=moving_average)
write_to_csv(data={key: plot_dict[key]}, loc=loc + ".csv")
def create_folder(folder_location, folder_name):
i = 0
while os.path.exists(os.getcwd() + folder_location + folder_name + str(i)):
i += 1
folder_name = os.getcwd() + folder_location + folder_name + str(i)
os.mkdir(folder_name)
return folder_name
class Font:
purple = '\033[95m'
cyan = '\033[96m'
darkcyan = '\033[36m'
blue = '\033[94m'
green = '\033[92m'
yellow = '\033[93m'
red = '\033[91m'
bgblue = '\033[44m'
bold = '\033[1m'
underline = '\033[4m'
end = '\033[0m'
class ExperienceReplay(object):
"""
Efficient experience replay pool for DQN.
"""
def __init__(self, max_size=100, history_len=1, state_shape=None, action_dim=1, reward_dim=1, state_dtype=np.uint8,
rng=None):
if rng is None:
self.rng = np.random.RandomState(1234)
else:
self.rng = rng
self.size = 0
self.head = 0
self.tail = 0
self.max_size = max_size
self.history_len = history_len
self.state_shape = state_shape
self.action_dim = action_dim
self.reward_dim = reward_dim
self.state_dtype = state_dtype
self._minibatch_size = None
self.states = np.zeros([self.max_size] + list(self.state_shape), dtype=self.state_dtype)
self.terms = np.zeros(self.max_size, dtype='bool')
if self.action_dim == 1:
self.actions = np.zeros(self.max_size, dtype='int32')
else:
self.actions = np.zeros((self.max_size, self.action_dim), dtype='int32')
if self.reward_dim == 1:
self.rewards = np.zeros(self.max_size, dtype='float32')
else:
self.rewards = np.zeros((self.max_size, self.reward_dim), dtype='float32')
def _init_batch(self, number):
self.s = np.zeros([number] + [self.history_len] + list(self.state_shape), dtype=self.states[0].dtype)
self.s2 = np.zeros([number] + [self.history_len] + list(self.state_shape), dtype=self.states[0].dtype)
self.t = np.zeros(number, dtype='bool')
action_indicator = self.actions[0]
if self.actions.ndim == 1:
self.a = np.zeros(number, dtype='int32')
else:
self.a = np.zeros((number, action_indicator.size), dtype=action_indicator.dtype)
if self.rewards.ndim == 1:
self.r = np.zeros(number, dtype='float32')
else:
self.r = np.zeros((number, self.reward_dim), dtype='float32')
def sample(self, num=1):
if self.size == 0:
logging.error('cannot sample from empty transition table')
elif num <= self.size:
if not self._minibatch_size or num != self._minibatch_size:
self._init_batch(number=num)
self._minibatch_size = num
for i in range(num):
self.s[i], self.a[i], self.r[i], self.s2[i], self.t[i] = self._get_transition()
return self.s, self.a, self.r, self.s2, self.t
elif num > self.size:
logging.error('transition table has only {0} elements; {1} requested'.format(self.size, num))
def _get_transition(self):
sample_success = False
while not sample_success:
randint = self.rng.randint(self.head, self.head + self.size - self.history_len)
state_indices = np.arange(randint, randint + self.history_len)
next_state_indices = state_indices + 1
transition_index = randint + self.history_len - 1
a_axis = None if self.action_dim == 1 else 0
r_axis = None if self.reward_dim == 1 else 0
if not np.any(self.terms.take(state_indices[:-1], mode='wrap')):
s = self.states.take(state_indices, mode='wrap', axis=0)
a = self.actions.take(transition_index, mode='wrap', axis=a_axis)
r = self.rewards.take(transition_index, mode='wrap', axis=r_axis)
t = self.terms.take(transition_index, mode='wrap')
s2 = self.states.take(next_state_indices, mode='wrap', axis=0)
sample_success = True
return s, a, r, s2, t
def add(self, s, a, r, t):
self.states[self.tail] = s
self.actions[self.tail] = a
self.rewards[self.tail] = r
self.terms[self.tail] = t
self.tail = (self.tail + 1) % self.max_size
if self.size == self.max_size:
self.head = (self.head + 1) % self.max_size
else:
self.size += 1
def reset(self):
self.size = 0
self.head = 0
self.tail = 0
self._minibatch_size = None
self.states = np.zeros([self.max_size] + list(self.state_shape), dtype=self.state_dtype)
self.terms = np.zeros(self.max_size, dtype='bool')
if isinstance(self.action_dim, int):
self.actions = np.zeros(self.max_size, dtype='int32')
else:
self.actions = np.zeros((self.max_size, self.action_dim.size), dtype=self.action_dim.dtype)
if isinstance(self.reward_dim, int):
self.rewards = np.zeros(self.max_size, dtype='float32')
else:
self.rewards = np.zeros((self.max_size, 2), dtype='float32')