-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPPO.py
321 lines (282 loc) · 13 KB
/
PPO.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import time
import gym
import torch
import torch.nn as nn
from torch.distributions import MultivariateNormal
from torch.distributions import Categorical
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from custom_env.envs import ObsAv_Env
class ActorCritic(nn.Module):
def __init__(self,obs_dim,action_dim,device):
super(ActorCritic,self).__init__()
self.obs_dim = obs_dim
self.action_dim = action_dim
self.device = device
self.actor = nn.Sequential(
nn.Linear(obs_dim,64),
nn.Tanh(),
nn.Linear(64,64),
nn.Tanh(),
nn.Linear(64,action_dim),
nn.Tanh()
)
self.critic = nn.Sequential(
nn.Linear(obs_dim,64),
nn.Tanh(),
nn.Linear(64,64),
nn.Tanh(),
nn.Linear(64,1)
)
self.action_var = torch.full((self.action_dim,),0.5).to(self.device)
def set_action_var(self,action_var):
self.action_var = torch.full((self.action_dim,),action_var**2).to(self.device)
def select_action(self,obs):
action_mean = self.actor(obs)
cov_matrix = torch.diag(self.action_var).unsqueeze(0)
dist = MultivariateNormal(action_mean,cov_matrix)
action = dist.sample()
action_logprob = dist.log_prob(action)
state_value = self.critic(obs)
return action.detach().cpu().numpy().flatten(),action_logprob.detach()
def evaluate(self,batch_obs,batch_acts):
mean = self.actor(batch_obs)
var = self.action_var.expand_as(mean)
cov_mat = torch.diag_embed(var).to(self.device)
dist = MultivariateNormal(mean,cov_mat)
logprobs = dist.log_prob(batch_acts)
V = self.critic(batch_obs).squeeze()
return V,logprobs,dist.entropy()
class Rollout_Buffer():
def __init__(self):
self.obs = []
self.actions = []
self.logprobs = []
self.rewards = []
self.values = []
self.dones = []
self.lengths = []
def clear(self):
del self.obs[:]
del self.actions[:]
del self.logprobs[:]
del self.rewards[:]
del self.values[:]
del self.dones[:]
del self.lengths[:]
class PPO():
def __init__(self,envs):
self.device = torch.device('cpu')
if(torch.cuda.is_available()):
self.device = torch.device("cuda:0")
torch.cuda.empty_cache()
print("Device set to " + str(torch.cuda.get_device_name(self.device)))
self.env = envs
self.run_name = f"ppo_log_{int(time.time())}"
self.writer = SummaryWriter(f"runs/{self.run_name}")
# assert(type(env.observation_space) == gym.spaces.box.Box)
# assert(type(env.action_space) == gym.spaces.box.Box)
self.obs_dim = np.prod(envs.observation_space.shape)
self.action_dim = np.prod(envs.action_space.shape)
self.agent = ActorCritic(self.obs_dim,self.action_dim,self.device).to(self.device)
self._init_hyperparams()
self.rollout_buffer = Rollout_Buffer()
self.actor_optim = torch.optim.Adam(self.agent.actor.parameters(),lr=self.lr)
self.critic_optim = torch.optim.Adam(self.agent.critic.parameters(),lr=self.lr)
self.logger = {
"timesteps": 0,
"iterations": 0,
"batch_length": [],
"batch_rewards": [],
"actor_loss": [],
"value_loss": [],
"lr": 0
}
def rollout(self):
t = 0
ep_rews = []
ep_vals = []
ep_dones = []
while t < self.timesteps_per_batch:
ep_rews = []
ep_vals = []
ep_dones = []
obs,_ = self.env.reset()
done = False
for step in range(self.max_timesteps_per_episode):
ep_dones.append(done)
t+=1
self.rollout_buffer.obs.append(obs)
action,logprob = self.agent.select_action(torch.tensor(obs,dtype=torch.float,device=self.device))
value = self.agent.critic(torch.tensor(obs,dtype=torch.float,device=self.device))
obs,reward,done,trunc,info = self.env.step(action)
ep_rews.append(reward)
ep_vals.append(value.flatten())
self.rollout_buffer.actions.append(action)
self.rollout_buffer.logprobs.append(logprob)
if done:
break
self.rollout_buffer.lengths.append(step+1)
self.rollout_buffer.rewards.append(ep_rews)
self.rollout_buffer.values.append(ep_vals)
self.rollout_buffer.dones.append(ep_dones)
batch_obs = torch.tensor(self.rollout_buffer.obs,dtype=torch.float).to(self.device)
batch_actions = torch.tensor(self.rollout_buffer.actions,dtype=torch.float).to(self.device)
batch_logprobs = torch.tensor(self.rollout_buffer.logprobs,dtype=torch.float).to(self.device)
batch_dones = self.rollout_buffer.dones
batch_rewards = self.rollout_buffer.rewards
batch_values = self.rollout_buffer.values
batch_lengths = self.rollout_buffer.lengths
batch_advantages = []
for epi_rews,epi_values,epi_dones in zip(batch_rewards,batch_values,batch_dones):
adv = []
last_adv = 0
for t in reversed(range(len(epi_rews))):
if t+1 < len(epi_rews):
delta = torch.tensor(epi_rews[t],dtype=torch.float,device=self.device) + self.gamma*epi_values[t+1]*(1-torch.tensor(epi_dones[t+1],dtype=torch.int,device=self.device)) - epi_values[t]
else:
delta = torch.tensor(epi_rews[t],dtype=torch.float,device=self.device) - epi_values[t]
advantage = delta + self.gamma*self.lam*(1-torch.tensor(epi_dones[t],dtype=torch.int,device=self.device))*last_adv
last_adv = advantage
adv.insert(0,advantage)
batch_advantages.extend(adv)
batch_advantages = torch.tensor(batch_advantages,dtype=torch.float).to(self.device)
self.logger["batch_rewards"] = batch_rewards
self.logger["batch_length"] = batch_lengths
return batch_obs,batch_actions,batch_logprobs,batch_rewards,batch_lengths,batch_values,batch_dones,batch_advantages
def learn(self,total_timesteps):
t = 0
i = 0
while t < total_timesteps:
self.logger["timesteps"] = t
self.logger["iterations"] = i
self.rollout_buffer.clear()
b_obs,b_actions,b_logprobs,b_rewards,b_lengths,b_values,b_dones,b_advantages = self.rollout()
t += np.sum(b_lengths)
i += 1
if i%self.video_freq == 0:
self.env = gym.wrappers.RecordVideo(self.env,f"videos/{self.run_name}")
V = self.agent.critic(b_obs).squeeze()
A = b_advantages
A = (A - A.mean())/(A.std()+1e-10)
b_reward_togo = A + V.detach()
size = b_obs.size(0)
inds = np.arange(size)
minibatch_size = size//self.num_minibatch
a_loss = []
v_loss = []
for _ in range(self.num_epochs):
frac = (t - 1.0)/total_timesteps
new_lr = self.lr*(1.0-frac)
new_lr = max(new_lr,0.0)
self.actor_optim.param_groups[0]["lr"] = new_lr
self.critic_optim.param_groups[0]["lr"] = new_lr
self.logger["lr"] = new_lr
np.random.shuffle(inds)
for start in range(0,size,minibatch_size):
end = start + minibatch_size
idx = inds[start:end]
mini_obs = b_obs[idx]
mini_actions = b_actions[idx]
mini_logprobs = b_logprobs[idx]
mini_A = A[idx]
mini_reward_togo = b_reward_togo[idx]
V,new_logprob,entropy = self.agent.evaluate(mini_obs,mini_actions)
logratio = new_logprob - mini_logprobs
ratio = torch.exp(logratio)
entropy_loss = entropy.mean()
approx_kl = ((ratio-1) - logratio).mean()
surr1 = ratio*mini_A
surr2 = mini_A*torch.clamp(ratio,1-self.clip,1+self.clip)
actor_loss = (-torch.min(surr1,surr2)).mean()
actor_loss = actor_loss - self.ent_coef*entropy_loss
self.actor_optim.zero_grad()
actor_loss.backward(retain_graph=True)
nn.utils.clip_grad_norm_(self.agent.actor.parameters(),self.max_grad_norm)
self.actor_optim.step()
critic_loss = nn.MSELoss()(V,mini_reward_togo)
self.critic_optim.zero_grad()
critic_loss.backward()
nn.utils.clip_grad_norm_(self.agent.critic.parameters(),self.max_grad_norm)
self.critic_optim.step()
a_loss.append(actor_loss.detach())
v_loss.append(critic_loss.detach())
if approx_kl>self.target_kl:
break
avg_a_loss = sum(a_loss)/len(a_loss)
avg_v_loss = sum(v_loss)/len(v_loss)
self.logger["actor_loss"].append(avg_a_loss.cpu())
self.logger["value_loss"].append(avg_v_loss.cpu())
self.log_summary()
if i % 10000 == 0:
self.save('./ppo_LunarLanderContinuous-v2')
def _init_hyperparams(self):
self.timesteps_per_batch = 1024
self.max_timesteps_per_episode = 1000
self.num_epochs = 4
self.clip = 0.2
self.lr = 3e-4
self.gamma = 0.999
self.lam = 0.98
self.num_minibatch = 6
self.ent_coef = 0.01
self.target_kl = 0.02
self.max_grad_norm = 0.5
self.env_id = "Pendulum-v1"
self.video_freq = 10000
def save(self,path):
torch.save(self.agent.state_dict(),path)
def load(self,path):
self.agent.load_state_dict(torch.load(path))
def log_summary(self):
timesteps = self.logger['timesteps']
self.writer.add_scalar("timesteps_so_far",timesteps)
iterations = self.logger["iterations"]
self.writer.add_scalar("iterations_so_far",iterations)
lr = self.logger["lr"]
self.writer.add_scalar("learning_rate",lr,iterations)
ep_len = np.mean(self.logger["batch_length"])
ep_rew = np.mean([np.sum(ep_rews) for ep_rews in self.logger["batch_rewards"]])
self.writer.add_scalar("episode_reward",ep_rew,iterations)
self.writer.add_scalar("episode_length",ep_len,iterations)
avg_actor_loss = np.mean([losses.float().mean() for losses in self.logger['actor_loss']])
avg_value_loss = np.mean([losses.float().mean() for losses in self.logger['value_loss']])
self.writer.add_scalar("actor_loss",avg_actor_loss,iterations)
self.writer.add_scalar("critic_loss",avg_value_loss,iterations)
ep_len = str(round(ep_len, 2))
ep_rew = str(round(ep_rew, 2))
avg_actor_loss = str(round(avg_actor_loss, 5))
avg_value_loss = str(round(avg_value_loss, 5))
print(flush=True)
print(f"-------------------- Iteration #{iterations} --------------------", flush=True)
print(f"Average Episodic Length: {ep_len}", flush=True)
print(f"Average Episodic Return: {ep_rew}", flush=True)
print(f"Average Loss: {avg_actor_loss}", flush=True)
print(f"Average value Loss: {avg_value_loss}", flush=True)
print(f"Timesteps So Far: {timesteps}", flush=True)
print(f"Learning rate: {lr}", flush=True)
print(f"------------------------------------------------------", flush=True)
print(flush=True)
self.logger['batch_lens'] = []
self.logger['batch_rews'] = []
self.logger['actor_losses'] = []
# def make_env(env_id,idx,run_name,gamma):
# def thunk():
# env = gym.make(env_id,render_mode = "rgb_array")
# env = gym.wrappers.FlattenObservation(env)
# env = gym.wrappers.RecordEpisodeStatistics(env)
# # if idx == 1:
# # env = gym.wrappers.RecordVideo(env,f"videos/{run_name}")
# env = gym.wrappers.ClipAction(env)
# env = gym.wrappers.NormalizeObservation(env)
# env = gym.wrappers.TransformObservation(env, lambda obs: np.clip(obs, -10, 10))
# env = gym.wrappers.NormalizeReward(env, gamma=gamma)
# env = gym.wrappers.TransformReward(env, lambda reward: np.clip(reward, -10, 10))
# return env
# return thunk
# gamma = 0.999
# env_id = "custom_env/ExpWorld-v1"
# run_name = f"{env_id}__{int(time.time())}"
# envs = gym.vector.SyncVectorEnv([make_env(env_id,i,run_name,gamma) for i in range(1)])
# model = PPO(envs)
# model.learn(1000000)