-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPPO_continuous.py
222 lines (178 loc) · 8.94 KB
/
PPO_continuous.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import os
import gym
import random
import time
from distutils.util import strtobool
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.distributions.normal import Normal
from torch.utils.tensorboard import SummaryWriter
from custom_env.envs import ObsAv_Env
start_time = 0
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class ActorCritic(nn.Module):
def __init__(self,obs_dim,action_dim,action_std):
super().__init__()
self.obs_dim = obs_dim
self.action_dim = action_dim
self.actor = nn.Sequential(
nn.Linear(np.prod(self.obs_dim),64),
nn.Tanh(),
nn.Linear(64,64),
nn.Tanh(),
nn.Linear(64,np.prod(self.action_dim))
)
self.critic = nn.Sequential(
nn.Linear(np.prod(self.obs_dim),64),
nn.Tanh(),
nn.Linear(64,64),
nn.Tanh(),
nn.Linear(64,1)
)
self.actor_std = torch.full((self.action_dim),action_std) ## dimension might be incorrect
def get_value(self,obs):
return self.critic(obs)
def get_actionAndvalue(self,obs,action = None):
action_mean = self.actor(obs).to(device)
action_std = self.actor_std.to(device)
dist = Normal(action_mean,action_std)
if action is None:
action = dist.sample()
return action, dist.log_prob(action).sum(1), dist.entropy().sum(1), self.critic(obs)
def rollout(envs,obs_buffer,values_buffer,action_buffer,rewards_buffer,dones_buffer,logprobs_buffer,obs,done,step,global_step,agent:ActorCritic,writer,device):
obs_buffer[step] = obs
dones_buffer[step] = done
with torch.no_grad():
action,logprob,_,value = agent.get_actionAndvalue(obs)
action_buffer[step] = action
values_buffer[step] = value.flatten()
logprobs_buffer[step] = logprob
next_obs,reward,next_done,truncated,infos = envs.step(action.cpu().numpy())
rewards_buffer[step] = torch.Tensor(reward).to(device)
obs = torch.Tensor(next_obs).to(device)
done = torch.Tensor(next_done).to(device)
for i in range(len(infos['final_info'])):
if infos["final_info"][i] == 0:
continue
print(f"global_step = {global_step}, episodic_return = {infos['episodic_return'][i]}")
writer.add_scalar("charts/episodic_return", infos['episodic_return'][i], global_step)
writer.add_scalar("charts/episodic_length", infos["ep_l"][i], global_step)
def train(envs,agent:ActorCritic,optim,obs_buffer,values_buffer,action_buffer,rewards_buffer,dones_buffer,logprobs_buffer,advantage_buffer,reward_togo,next_obs,next_done,gamma,num_steps,global_step,batch_size,num_epochs,mbatch_size,clip_coef,writer):
global start_time
with torch.no_grad():
for step in reversed(range(num_steps)):
if step == num_steps-1:
next_nonterminal = 1 - torch.Tensor(next_done).to(device) ## get next_done and next_nonterminal values by running envs.step one last time
next_value = agent.get_value(next_obs).reshape(1,-1)
else:
next_nonterminal = 1 - dones_buffer[step+1]
next_value = values_buffer[step+1]
Q_value = rewards_buffer[step] + gamma*next_nonterminal*next_value
advantage_buffer[step] = Q_value - values_buffer[step]
reward_togo[step] = Q_value
reward_togo = (reward_togo - reward_togo.mean())/(reward_togo.std() + 1e-8)
b_obs = obs_buffer.reshape((-1,) + envs.single_observation_space.shape)
b_logprobs = logprobs_buffer.reshape(-1)
b_actions = action_buffer.reshape((-1,) + envs.single_action_space.shape)
b_advantages = advantage_buffer.reshape(-1)
b_reward_togo = reward_togo.reshape(-1)
b_values = values_buffer.reshape(-1)
b_reward_togo = reward_togo.reshape(-1)
b_inds = np.arange(batch_size)
for epoch in range(num_epochs):
np.random.shuffle(b_inds)
for start in range(0,batch_size,mbatch_size):
end = start + mbatch_size
mb_inds = b_inds[start:end]
_,newlogprob,entropy,newvalues = agent.get_actionAndvalue(b_obs[mb_inds],b_actions[mb_inds])
ratio = (newlogprob - b_logprobs[mb_inds]).exp()
mb_advantages = b_advantages[mb_inds]
pg_loss1 = mb_advantages*ratio
pg_loss2 = mb_advantages*torch.clamp(ratio,1-clip_coef,1+clip_coef)
pg_loss = torch.min(pg_loss1,pg_loss2).mean()
newvalues = newvalues.reshape((-1,))
v_loss = 0.5*((newvalues - b_reward_togo[mb_inds])**2).mean()
entropy_loss = entropy.mean()
loss = -pg_loss - 0.01*entropy_loss + 0.5*v_loss
optim.zero_grad()
loss.backward()
optim.step()
y_pred, y_true = b_values.cpu().numpy(), b_reward_togo.cpu().numpy()
var_y = np.var(y_true)
explained_var = np.nan if var_y == 0 else 1 - np.var(y_true - y_pred) / var_y
writer.add_scalar("charts/learning_rate", optim.param_groups[0]["lr"], global_step)
writer.add_scalar("losses/value_loss", v_loss.item(), global_step)
writer.add_scalar("losses/policy_loss", pg_loss.item(), global_step)
writer.add_scalar("losses/entropy", entropy_loss.item(), global_step)
writer.add_scalar("losses/explained_variance", explained_var, global_step)
print("SPS:", int(global_step / (time.time() - start_time)))
# if num_steps%500 == 0:
print("####################","\n")
print(f"loss: {loss}","\n",f"pg_loss: {pg_loss}",'\n',f"value_loss: {v_loss}",'\n',"####################")
writer.add_scalar("charts/SPS", int(global_step / (time.time() - start_time)), global_step)
def save(agent:ActorCritic,path):
torch.save(agent.state_dict(),path)
def make_env(env_id,idx,run_name,gamma):
def thunk():
env = gym.make(env_id,render_mode = "rgb_array")
env = gym.wrappers.FlattenObservation(env)
env = gym.wrappers.RecordEpisodeStatistics(env)
# if idx == 1:
# env = gym.wrappers.RecordVideo(env,f"videos/{run_name}")
env = gym.wrappers.ClipAction(env)
env = gym.wrappers.NormalizeObservation(env)
env = gym.wrappers.TransformObservation(env, lambda obs: np.clip(obs, -10, 10))
env = gym.wrappers.NormalizeReward(env, gamma=gamma)
env = gym.wrappers.TransformReward(env, lambda reward: np.clip(reward, -10, 10))
return env
return thunk
def PPO(env_id,num_envs,num_steps,learning_rate,gamma,total_timesteps,batch_size,num_epochs,mbatch_size,clip_coef,save_freq):
global start_time
run_name = f"{env_id}__{int(time.time())}"
writer = SummaryWriter(f"runs/{run_name}")
random.seed(1)
np.random.seed(1)
torch.manual_seed(1)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
envs = gym.vector.SyncVectorEnv([make_env(env_id,i,run_name,gamma) for i in range(num_envs)])
agent = ActorCritic(envs.single_observation_space.shape,envs.single_action_space.shape,1).to(device)
optimizer = optim.Adam(agent.parameters(),lr = learning_rate, eps=1e-5)
obs_buffer = torch.zeros((num_steps,num_envs) + envs.single_observation_space.shape).to(device)
action_buffer = torch.zeros((num_steps,num_envs) + envs.single_action_space.shape).to(device)
logprobs_buffer = torch.zeros((num_steps,num_envs)).to(device)
rewards_buffer = torch.zeros((num_steps,num_envs)).to(device)
dones_buffer = torch.zeros((num_steps,num_envs)).to(device)
values_buffer = torch.zeros((num_steps,num_envs)).to(device)
start_time = time.time()
global_step = 0
obs,_ = envs.reset()
obs = torch.Tensor(obs).to(device)
done = torch.zeros(num_envs).to(device)
num_updates = int(total_timesteps/batch_size)
for update in range(num_updates):
for step in range(num_steps):
global_step += num_envs
rollout(envs,obs_buffer,values_buffer,action_buffer,rewards_buffer,dones_buffer,logprobs_buffer,obs,done,step,global_step,agent,writer,device)
next_obs = obs_buffer[num_steps-1]
_,_,next_done,_,_ = envs.step(action_buffer[num_steps-1].cpu().numpy())
advantages = torch.zeros_like(rewards_buffer).to(device).detach()
reward_togo = torch.zeros_like(rewards_buffer).to(device).detach()
train(envs,agent,optimizer,obs_buffer,values_buffer,action_buffer,rewards_buffer,dones_buffer,logprobs_buffer,advantages,reward_togo,
next_obs,next_done,gamma,num_steps,global_step,batch_size,num_epochs,mbatch_size,clip_coef,writer)
if update % save_freq == 0:
save(agent,path="runs/policy")
if __name__ == "__main__":
env_id = "custom_env/ExpWorld-v1"
PPO(env_id = env_id,
num_envs = 1,
num_steps = 2000,
learning_rate=3e-4,
gamma=0.99,
total_timesteps=1000000,
batch_size = 2000,
num_epochs=10,
mbatch_size=250,
clip_coef=0.2,
save_freq=50)