-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_index.py
84 lines (60 loc) · 2.13 KB
/
test_index.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# Standard Library imports
import os
import pickle
# External imports
import faiss
import cv2
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
# Local imports
import config as config
def display_query_results(im_query, distances, indices, nrows=2, ncols=5):
""" """
max_images = int(nrows * ncols)
df = pd.read_csv(config.IMAGES_DF_PATH)
fig = plt.figure(figsize=(12, 8)) # w,h
plt.subplot(nrows, ncols, 1)
plt.imshow(im_query)
plt.axis("off")
plt.title("Query")
for i, (dist, im_idx) in enumerate(zip(distances, indices)):
if i == max_images:
break
image_path = df.loc[im_idx].image_path
im_pred = cv2.imread(str(image_path))
im_pred = cv2.cvtColor(im_pred, cv2.COLOR_BGR2RGB)
plt.subplot(nrows, ncols, i + 1 + 1) # one corresponds to the query image
plt.imshow(im_pred)
plt.title(f"{dist:.3f}")
plt.axis("off")
plt.tight_layout()
plt.show()
def query_index(embedding, index, index_type, n_results):
""" """
if index_type == "faiss":
faiss.normalize_L2(embedding)
distances, indices = index.search(embedding, n_results)
indices = indices.ravel().tolist()
distances = distances.ravel().tolist()
elif index_type == "dict":
embedding = embedding / np.linalg.norm(embedding)
# similarities = cosine_similarity(index, embedding).ravel()
distances = []
for i in range(len(index)):
d = np.linalg.norm(index[i, :] - embedding)
distances.append(d)
distances = np.array(distances)
indices = distances.argsort()[:n_results]
distances = distances[indices]
return indices, distances
def read_index():
""" """
if config.INDEX_TYPE == "dict":
with open(config.MANUAL_INDEX_PATH, "rb") as f:
index = pickle.load(f)
print(f"There are {len(index)} observations in the index")
elif config.INDEX_TYPE == "faiss":
index = faiss.read_index(str(config.FAISS_INDEX_PATH))
print(f"There are {index.ntotal} observations in the index")
return index