-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathpapers.html
96 lines (92 loc) · 10.6 KB
/
papers.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Selected Papers</title>
<style>
h1 {
text-align: center;
font-size: 2.5em; /* Adjust the value as needed */
}
h2 {
font-size: 1.5em; /* Adjust the value as needed */
}
li {
font-size: 1.2em; /* Adjust the value as needed */
}
body {
margin-left: 0.5in; /* Adjust the value as needed */
background: repeating-linear-gradient(
white,
white 29px,
#88c 30px
);
}
</style>
</head>
<body>
<h1>Papers</h1>
<h2>2024</h2>
<ul>
<li><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/38629960/" target="_blank">Bone Age Prediciton Under Stress</a></li>
<li><a href="https://pubs.rsna.org/doi/10.1148/ryai.240262?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed" target="_blank">Bridging Pixels to Genes</a></li>
<li><a href="https://linkinghub.elsevier.com/retrieve/pii/S1542-3565(23)01050-9" target="_blank">The Evolving Role of Artificial Intelligence in Gastrointestinal Histopathology: An Update</a></li>
<li><a href="https://pubs.rsna.org/doi/10.1148/radiol.230242?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed" target="_blank">FDA Review of Radiologic AI Algorithms: Process and Challenges</a></li>
<li><a href="https://link.springer.com/article/10.1007/s10278-024-01138-2" target="_blank">MedYOLO: A Medical Image Object Detection Framework</a></li>
<li><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/38821021/" target="_blank">Synthetically enhanced: unveiling synthetic data's potential in medical imaging research</a></li>
<li><a href="https://linkinghub.elsevier.com/retrieve/pii/S1546-1440(24)00535-0" target="_blank">Exploring the Effect of Domain-Specific Transfer Learning for Thyroid Nodule Classification</a></li>
<li><a href="https://pubs.rsna.org/doi/10.1148/rg.230243?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed" target="_blank">Invited Commentary: The Double-edged Sword of Bias in Medical Imaging Artificial Intelligence</a></li>
<li><a href="https://linkinghub.elsevier.com/retrieve/pii/S0883-5403(23)00872-0" target="_blank">THA-Net: A Deep Learning Solution for Next-Generation Templating and Patient-specific Surgical Execution</a></li>
<li><a href="http://www.ajnr.org/cgi/pmidlookup?view=long&pmid=38423747" target="_blank">Identifying Patients with CSF-Venous Fistula Using Brain MRI: A Deep Learning Approach</a></li>
<li><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/39061730/" target="_blank">A Multi-View Deep Learning Model for Thyroid Nodules Detection and Characterization in Ultrasound Imaging</a></li>
<li><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/38366293/" target="_blank">Generative Adversarial Networks for Brain MRI Synthesis: Impact of Training Set Size on Clinical Application</a></li>
<li><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/38366291/" target="_blank">Visualizing Clinical Data Retrieval and Curation in Multimodal Healthcare AI Research: A Technical Note on RIL-workflow</a></li>
<li><a href="https://linkinghub.elsevier.com/retrieve/pii/S0883-5403(23)00983-X" target="_blank">THA-AID: Deep Learning Tool for Total Hip Arthroplasty Automatic Implant Detection With Uncertainty and Outlier Quantification</a></li>
<li><a href="https://doi.org/10.1007/s00256-024-04733-0" target="_blank">Whole-body low-dose computed tomography in patients with newly diagnosed multiple myeloma predicts cytogenetic risk: a deep learning radiogenomics study</a></li>
<li><a href="https://linkinghub.elsevier.com/retrieve/pii/S0025-6196(23)00469-X" target="_blank">Older Tissue Age Derived From Abdominal Computed Tomography Biomarkers of Muscle, Fat, and Bone Is Associated With Chronic Conditions and Higher Mortality</a></li>
<li><a href="https://pubs.rsna.org/doi/full/10.1148/radiol.232635" target="_blank">Fully Automated Deep Learning Model to Detect Clinically Significant Prostate Cancer at MRI</a></li>
<li><a href="path" target="_blank">A Guideline for Open-Source Tools to Make Medical Imaging Data Ready for Artificial Intelligence Applications: A Society of Imaging Informatics in Medicine (SIIM) Survey--In Process</a></li>
<li><a href="path" target="_blank">Next</a></li>
<li><a href="NotAvailableYet" target="_blank">Checklist for Reproducibility of Deep Learning in Medical Imaging--In Process</a></li>
</ul>
<h2>2023</h2>
<ul>
<li><a href="https://pubs.rsna.org/doi/10.1148/radiol.222217?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed" target="_blank">Quantifying Uncertainty in Deep Learning of Radiologic Images</a></li>
<li><a href="https://doi.org/10.1007/s10278-023-00870-5" target="_blank">Reproducibility of Deep Learning Algorithms Developed for Medical Imaging Analysis: A Systematic Review</a></li>
<li><a href="https://linkinghub.elsevier.com/retrieve/pii/S0883-5403(23)00854-9" target="_blank">Application of Natural Language Processing in Total Joint Arthroplasty: Opportunities and Challenges</a></li>
<li><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/38074777/" target="_blank">Anonymizing Radiographs Using an Object Detection Deep Learning Algorithm</a></li>
<li><a href="https://linkinghub.elsevier.com/retrieve/pii/S0169-2607(23)00498-4" target="_blank">Few-shot biomedical image segmentation using diffusion models: Beyond image generation</a></li>
<li><a href="https://linkinghub.elsevier.com/retrieve/pii/S0037-198X(23)00006-8" target="_blank">Artificial Intelligence in Radiology: Overview of Application Types, Design, and Challenges</a></li>
<li><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/36931980/" target="_blank">Clinical Implementation of an Artificial Intelligence Algorithm for Magnetic Resonance-Derived Measurement of Total Kidney Volume</a></li>
<li><a href="https://dx.doi.org/10.1007/s00261-023-03988-w" target="_blank">Deep learning approach for differentiating indeterminate adrenal masses using CT imaging</a></li>
<li><a href="https://doi.org/10.1007/s00256-022-04160-z" target="_blank">A deep learning algorithm for detecting lytic bone lesions of multiple myeloma on CT</a></li>
<li><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/36736536/" target="_blank">Utility of new image-derived biomarkers for autosomal dominant polycystic kidney disease prognosis using automated instance cyst segmentation</a></li>
<li><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/36604366/" target="_blank">A Comparison of Three Different Deep Learning-Based Models to Predict the MGMT Promoter Methylation Status in Glioblastoma Using Brain MRI</a></li>
<li><a href="https://linkinghub.elsevier.com/retrieve/pii/S0883-5403(22)01087-7" target="_blank">Creating High Fidelity Synthetic Pelvis Radiographs Using Generative Adversarial Networks: Unlocking the Potential of Deep Learning Models Without Patient Privacy Concerns</a></li>
</ul>
<h2>2022</h2>
<ul>
<li><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/35448707/" target="_blank">SOUP-GAN: Super-Resolution MRI Using Generative Adversarial Networks</a></li>
<li><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/36292201/" target="_blank">Machine Learning and Deep Learning in Cardiothoracic Imaging: A Scoping Review</a></li>
<li><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/36204544/" target="_blank">Mitigating Bias in Radiology Machine Learning: 1. Data Handling</a></li>
<li><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/36204532/" target="_blank">Mitigating Bias in Radiology Machine Learning: 2. Model Development</a></li>
<li><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/36204539/" target="_blank">Mitigating Bias in Radiology Machine Learning: 3. Performance Metrics</a></li>
<li><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/36396865/" target="_blank">Algebraic topology-based machine learning using MRI predicts outcomes in primary sclerosing cholangitis</a></li>
<li><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/36523643/" target="_blank">Patient-specific Hip Arthroplasty Dislocation Risk Calculator: An Explainable Multimodal Machine Learning-based Approach</a></li>
<li><a href="https://doi.org/10.2106/JBJS.22.00567" target="_blank">Getting More Out of Large Databases and EHRs with Natural Language Processing and Artificial Intelligence: The Future Is Here</a></li>
<li><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/35652119/" target="_blank">Deep Learning for Radiographic Measurement of Femoral Component Subsidence Following Total Hip Arthroplasty</a></li>
<li><a href="https://doi.org/10.1007/s11060-022-04080-x" target="_blank">A deep learning model for discriminating true progression from pseudoprogression in glioblastoma patients</a></li>
<li><a href="https://linkinghub.elsevier.com/retrieve/pii/S0016-5107(22)01764-3" target="_blank">Development of a deep learning model for the histologic diagnosis of dysplasia in Barrett's esophagus</a></li>
<li><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/35476147/" target="_blank">Automated measurement of total kidney volume from 3D ultrasound images of patients affected by polycystic kidney disease and comparison to MR measurements</a></li>
</ul>
<h2>Older</h2>
<ul>
<li><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/28212054/" target="_blank">Machine Learning for Medical Imaging</a></li>
<li><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/33937797/" target="_blank">Magician's Corner: How to Start Learning about Deep Learning</a></li>
<li><a href="https://pubs.rsna.org/doi/10.1148/radiology.206.3.9494473?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed" target="_blank">Magician's Corner: How to Start Learning about Deep Learning</a></li>
<li><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/9268835/" target="_blank">Image display for clinicians on medical record workstations</a></li>
<li><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/17216385/" target="_blank">Part 1. Automated change detection and characterization in serial MR studies of brain-tumor patients</a></li>
</ul>
</body>
</html>