-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
189 lines (163 loc) · 5.46 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import bisect
import warnings
import megengine.data.transform as T
import megengine.functional as F
from megengine.data.dataset import Dataset
from megengine.data import DataLoader
from dataset.office31 import Office31
def get_train_transform(
resizing="default",
random_horizontal_flip=True,
random_color_jitter=False,
resize_size=224,
norm_mean=(0.485, 0.456, 0.406),
norm_std=(0.229, 0.224, 0.225),
):
"""
resizing mode:
- default: resize the image to 256 and take a random resized crop of size 224;
- cen.crop: resize the image to 256 and take the center crop of size 224;
- res: resize the image to 224;
"""
if resizing == "default":
transform = T.Compose([T.Resize(256), T.RandomResizedCrop(224)])
elif resizing == "cen.crop":
transform = T.Compose([T.Resize(256), T.CenterCrop(224)])
elif resizing == "ran.crop":
transform = T.Compose([T.Resize(256), T.RandomCrop(224)])
elif resizing == "res.":
transform = T.Resize(resize_size)
else:
raise NotImplementedError(resizing)
transforms = [transform]
if random_horizontal_flip:
transforms.append(T.RandomHorizontalFlip())
if random_color_jitter:
transforms.append(
T.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.5)
)
transforms.extend([T.Normalize(mean=norm_mean, std=norm_std), T.ToMode("CHW")])
return T.Compose(transforms)
def get_val_transform(
resizing="default",
resize_size=224,
norm_mean=(0.485, 0.456, 0.406),
norm_std=(0.229, 0.224, 0.225),
):
"""
resizing mode:
- default: resize the image to 256 and take the center crop of size 224;
– res.: resize the image to 224
"""
if resizing == "default":
transform = T.Compose(
[
T.Resize(256),
T.CenterCrop(224),
]
)
elif resizing == "res.":
transform = T.Resize(resize_size)
else:
raise NotImplementedError(resizing)
return T.Compose(
[transform, T.Normalize(mean=norm_mean, std=norm_std), T.ToMode("CHW")]
)
class ConcatDataset(Dataset):
r"""Dataset as a concatenation of multiple datasets.
This class is useful to assemble different existing datasets.
Args:
datasets (sequence): List of datasets to be concatenated
"""
@staticmethod
def cumsum(sequence):
r, s = [], 0
for e in sequence:
L = len(e)
r.append(L + s)
s += L
return r
def __init__(self, datasets) -> None:
super(ConcatDataset, self).__init__()
# Cannot verify that datasets is Sized
assert len(datasets) > 0, "datasets should not be an empty iterable" # type: ignore[arg-type]
self.datasets = list(datasets)
self.cumulative_sizes = self.cumsum(self.datasets)
def __len__(self):
return self.cumulative_sizes[-1]
def __getitem__(self, idx):
if idx < 0:
if -idx > len(self):
raise ValueError(
"absolute value of index should not exceed dataset length"
)
idx = len(self) + idx
dataset_idx = bisect.bisect_right(self.cumulative_sizes, idx)
if dataset_idx == 0:
sample_idx = idx
else:
sample_idx = idx - self.cumulative_sizes[dataset_idx - 1]
return self.datasets[dataset_idx][sample_idx]
@property
def cummulative_sizes(self):
warnings.warn(
"cummulative_sizes attribute is renamed to " "cumulative_sizes",
DeprecationWarning,
stacklevel=2,
)
return self.cumulative_sizes
def get_dataset(
dataset_name,
root,
source,
target,
train_source_transform,
val_transform,
train_target_transform=None,
):
if train_target_transform is None:
train_target_transform = train_source_transform
if dataset_name != "Office31":
raise NotImplementedError
def concat_dataset(tasks, **kwargs):
return ConcatDataset([Office31(task=task, **kwargs) for task in tasks])
train_source_dataset = concat_dataset(
root=root, tasks=source, download=True, transform=train_source_transform
)
train_target_dataset = concat_dataset(
root=root, tasks=target, download=True, transform=train_target_transform
)
val_dataset = concat_dataset(
root=root, tasks=target, download=True, transform=val_transform
)
test_dataset = val_dataset
class_names = train_source_dataset.datasets[0].classes
num_classes = len(class_names)
return (
train_source_dataset,
train_target_dataset,
val_dataset,
test_dataset,
num_classes,
class_names,
)
class ForeverDataIterator:
r"""A data iterator that will never stop producing data"""
def __init__(self, data_loader: DataLoader):
self.data_loader = data_loader
self.iter = iter(self.data_loader)
def __next__(self):
try:
data = next(self.iter)
except StopIteration:
self.iter = iter(self.data_loader)
data = next(self.iter)
return data
def __len__(self):
return len(self.data_loader)
def accuracy(output, target, topk=1):
batch_size = target.shape[0]
_, pred = F.topk(output, k=1, descending=True)
pred = F.flatten(pred)
correct = sum(pred == target) / batch_size
return correct * 100