-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_loading.py
46 lines (41 loc) · 2.21 KB
/
data_loading.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import torch
import torchvision
import torchvision.transforms as transforms
import numpy as np
def prepare_data(batch_size, num_workers):
null_transform = transforms.Compose(
[transforms.ToTensor()]
)
train_transform = transforms.Compose(
[transforms.RandomHorizontalFlip(),
# transforms.RandomAffine(15, translate=(0.2, 0.2), scale=(0.9, 1.1)),
transforms.RandomAffine(10, translate=(0.1, 0.1)),
transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.2),
transforms.ToTensor(),
transforms.Normalize((0.49139968, 0.48215841, 0.44653091),
(0.24703223, 0.24348513, 0.26158784))
])
# [transforms.RandomHorizontalFlip(),
# transforms.RandomCrop(size=32, padding=[0, 2, 3, 4]),
# transforms.ToTensor(),
# transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
test_transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.49139968, 0.48215841, 0.44653091),
(0.24703223, 0.24348513, 0.26158784))])
set_to_statisctics = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=null_transform)
avg = (np.mean(set_to_statisctics.data, axis=(0, 1, 2))/255)
std = (np.std(set_to_statisctics.data, axis=(0, 1, 2))/255)
# print(avg, std)
train_set = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=train_transform)
train_loader = torch.utils.data.DataLoader(train_set, batch_size=batch_size,
shuffle=True, num_workers=num_workers)
test_set = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=test_transform)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=batch_size,
shuffle=False, num_workers=num_workers)
classes = ('Plane', 'Car', 'Bird', 'Cat', 'Deer',
'Dog', 'Frog', 'Horse', 'Ship', 'Truck')
return train_loader, test_loader, classes