-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathanimate_qual_results.py
141 lines (112 loc) · 5.78 KB
/
animate_qual_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import argparse
import multiprocessing
import os
import re
import moviepy.editor as mpy
import numpy as np
from PIL import Image, ImageDraw
from tqdm import tqdm
from src.util.util import get_folder_paths_at_depth
def create_video(frames, save_path, fps, high_quality=False):
"""Save the given frames as a GIF.
:param frames: A sequence of PIL Images
:param save_path: The path to the final GIF file
:param fps: The frame rate of the GIF
:param high_quality: Flag to optimize GIF quality with ImageMagick backend (at the cost of speed)
"""
clip = mpy.ImageSequenceClip([np.array(frame) for frame in frames], fps=fps)
if high_quality:
clip.write_gif(save_path, verbose=False, progress_bar=False, program='ImageMagick', opt='optimizeplus')
else:
clip.write_gif(save_path, verbose=False, progress_bar=False)
def draw_border(image, color):
"""Draws a border around the given image.
:param image: A np.ndarray image
:param color: The color of the border. Supports any PIL ImageColor (e.g. strings or tuples)
"""
W, H = image.size
image_rgb = image.convert('RGB')
draw = ImageDraw.Draw(image_rgb)
draw.line([(1, 0), (W-2, 0), (W-2, H-1), (1, H-1), (1, 0)], width=2, fill=color)
return image_rgb
def get_files_in_path(root_path, file_name_pattern):
"""Return the full paths to the files under the given path whose file name matches the file name pattern.
:param root_path: The parent directory of the files to obtain
:param file_name_pattern: A regex pattern that matches the desired file names
"""
filter_fn = lambda x: re.match(file_name_pattern, x) is not None
root_path_base_names = filter(filter_fn, os.listdir(root_path))
return sorted([os.path.join(root_path, base_name) for base_name in root_path_base_names])
def animate_frames_in_path((qual_frame_root_path, fps, high_quality, create_gt_gif)):
gt_frames = []
pred_frames = []
# Process GT preceding frames
preceding_frame_paths = get_files_in_path(qual_frame_root_path, 'gt_preceding_[0-9]+.png')
for preceding_frame_path in preceding_frame_paths:
gt_preceding_frame = Image.open(preceding_frame_path)
gt_preceding_frame = draw_border(gt_preceding_frame, 'lime')
gt_frames.append(gt_preceding_frame)
pred_frames.append(gt_preceding_frame)
# Process GT middle frames
gt_middle_frame_paths = get_files_in_path(qual_frame_root_path, 'gt_middle_[0-9]+.png')
# If GT middle frames were found, toggle flag to generate GT sequence
if create_gt_gif:
if len(gt_middle_frame_paths) > 0:
for middle_frame_path in gt_middle_frame_paths:
gt_middle_frame = Image.open(middle_frame_path)
gt_middle_frame = draw_border(gt_middle_frame, 'red')
gt_frames.append(gt_middle_frame)
else:
raise RuntimeError('Create GT GIF flag is on, but failed to find GT middle frames in %s'
% qual_frame_root_path)
# Process predicted middle frames
pred_middle_frame_paths = get_files_in_path(qual_frame_root_path, 'pred_middle_[0-9]+.png')
for middle_frame_path in pred_middle_frame_paths:
pred_middle_frame = Image.open(middle_frame_path)
pred_middle_frame = draw_border(pred_middle_frame, 'red')
pred_frames.append(pred_middle_frame)
# Process GT following frames
following_frame_paths = get_files_in_path(qual_frame_root_path, 'gt_following_[0-9]+.png')
for following_frame_path in following_frame_paths:
gt_following_frame = Image.open(following_frame_path)
gt_following_frame = draw_border(gt_following_frame, 'lime')
gt_frames.append(gt_following_frame)
pred_frames.append(gt_following_frame)
# Create GT GIF
if create_gt_gif:
gt_gif_path = os.path.join(qual_frame_root_path, 'gt.gif')
create_video(gt_frames, gt_gif_path, fps, high_quality=high_quality)
# Create predicted GIF
pred_gif_path = os.path.join(qual_frame_root_path, 'pred_final.gif')
create_video(pred_frames, pred_gif_path, fps, high_quality=high_quality)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('qual_results_root', type=str)
parser.add_argument('--depth', type=int, default=1,
help='Depth of the folders for each video (e.g. 2 for <qual_results_root>/<action>/<video>)')
parser.add_argument('--num_workers', type=int, default=multiprocessing.cpu_count(),
help='Number of workers to use to generate GIFs')
parser.add_argument('--high_quality', action='store_true',
help='Flag to generate higher-quality GIFs at the cost of speed')
parser.add_argument('--fps', type=int, default=3, help='Frames per second for each GIF')
parser.add_argument('--create_gt_gif', action='store_true', help='Flag to animate the GT frames')
args = parser.parse_args()
# Get the paths to the qualitative frames of each test video
qual_frame_root_paths = get_folder_paths_at_depth(args.qual_results_root, args.depth)
if len(qual_frame_root_paths) == 0:
print('Failed to find any qualitative results (make sure you ran predict.py before this script). Quitting...')
return
print('Now animating qualitative results...')
job_args = zip(
qual_frame_root_paths,
[args.fps for _ in qual_frame_root_paths],
[args.high_quality for _ in qual_frame_root_paths],
[args.create_gt_gif for _ in qual_frame_root_paths]
)
pool = multiprocessing.Pool(args.num_workers)
job_result_iter = pool.imap_unordered(animate_frames_in_path, job_args)
for _ in tqdm(job_result_iter, total=len(qual_frame_root_paths)):
pass
print('Done animating qualitative results.')
if __name__ == '__main__':
main()