-
Notifications
You must be signed in to change notification settings - Fork 4.3k
/
Copy pathCNTKLibraryCSEvalExamples.cs
1024 lines (876 loc) · 52.7 KB
/
CNTKLibraryCSEvalExamples.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//
// Copyright (c) Microsoft. All rights reserved.
// Licensed under the MIT license. See LICENSE.md file in the project root for full license information.
//
// CNTKLibraryCSEvalExamples.cs -- Examples for using CNTK Library C# Eval API.
//
using System;
using System.Collections.Concurrent;
using System.Collections.Generic;
using System.Drawing;
using System.IO;
using System.Linq;
using System.Threading;
using System.Threading.Tasks;
using CNTK;
using CNTKExtension;
using CNTKImageProcessing;
namespace CNTKLibraryCSEvalExamples
{
public static class CNTKLibraryManagedExamples
{
/// <summary>
/// Data used for all the example tests
/// </summary>
public static string ExampleTestDataDir;
/// <summary>
/// Vocal data used for sequence tests
/// </summary>
private static string VocabFile;
/// <summary>
/// Lable data used for sequence tests
/// </summary>
private static string LabelFile;
/// <summary>
/// Single sample image
/// </summary>
private static string SampleImage;
/// <summary>
/// Set up commonly used file paths
/// </summary>
public static void Setup()
{
ExampleTestDataDir = string.IsNullOrEmpty(ExampleTestDataDir) ? ExampleTestDataDir : ExampleTestDataDir + "/";
VocabFile = ExampleTestDataDir + "query.wl";
LabelFile = ExampleTestDataDir + "slots.wl";
SampleImage = ExampleTestDataDir + "00000.png";
}
/// <summary>
/// The example shows
/// - how to load model.
/// - how to prepare input data for a single sample.
/// - how to prepare input and output data map.
/// - how to evaluate a model.
/// - how to retrieve evaluation result and retrieve output data in dense format.
/// </summary>
/// <param name="device">Specify on which device to run the evaluation.</param>
public static void EvaluationSingleImage(DeviceDescriptor device)
{
try
{
Console.WriteLine("\n===== Evaluate single image =====");
// Load the model.
// The model resnet20.dnn is trained by <CNTK>/Examples/Image/Classification/ResNet/Python/TrainResNet_CIFAR10.py
// Please see README.md in <CNTK>/Examples/Image/Classification/ResNet about how to train the model.
string modelFilePath = ExampleTestDataDir + "resnet20.dnn";
ThrowIfFileNotExist(modelFilePath, string.Format("Error: The model '{0}' does not exist. Please follow instructions in README.md in <CNTK>/Examples/Image/Classification/ResNet to create the model.", modelFilePath));
Function modelFunc = Function.Load(modelFilePath, device);
// Get input variable. The model has only one single input.
// The same way described above for output variable can be used here to get input variable by name.
Variable inputVar = modelFunc.Arguments.Single();
// Get shape data for the input variable
NDShape inputShape = inputVar.Shape;
int imageWidth = inputShape[0];
int imageHeight = inputShape[1];
// Image preprocessing to match input requirements of the model.
// This program uses images from the CIFAR-10 dataset for evaluation.
// Please see README.md in <CNTK>/Examples/Image/DataSets/CIFAR-10 about how to download the CIFAR-10 dataset.
ThrowIfFileNotExist(SampleImage, string.Format("Error: The sample image '{0}' does not exist. Please see README.md in <CNTK>/Examples/Image/DataSets/CIFAR-10 about how to download the CIFAR-10 dataset.", SampleImage));
Bitmap bmp = new Bitmap(Bitmap.FromFile(SampleImage));
var resized = bmp.Resize(imageWidth, imageHeight, true);
List<float> resizedCHW = resized.ParallelExtractCHW();
// Create input data map
var inputDataMap = new Dictionary<Variable, Value>();
var inputVal = Value.CreateBatch(inputShape, resizedCHW, device);
inputDataMap.Add(inputVar, inputVal);
// The model has only one output.
// You can also use the following way to get output variable by name:
// Variable outputVar = modelFunc.Outputs.Where(variable => string.Equals(variable.Name, outputName)).Single();
Variable outputVar = modelFunc.Output;
// Create output data map. Using null as Value to indicate using system allocated memory.
// Alternatively, create a Value object and add it to the data map.
var outputDataMap = new Dictionary<Variable, Value>();
outputDataMap.Add(outputVar, null);
// Start evaluation on the device
modelFunc.Evaluate(inputDataMap, outputDataMap, device);
// Get evaluate result as dense output
var outputVal = outputDataMap[outputVar];
var outputData = outputVal.GetDenseData<float>(outputVar);
Console.WriteLine("Evaluation result for image " + SampleImage);
PrintOutput(outputVar.Shape.TotalSize, outputData);
}
catch (Exception ex)
{
Console.WriteLine("Error: {0}\nCallStack: {1}\n Inner Exception: {2}", ex.Message, ex.StackTrace, ex.InnerException != null ? ex.InnerException.Message : "No Inner Exception");
throw ex;
}
}
/// <summary>
/// The example shows
/// - how to load model.
/// - how to prepare input data for a batch of samples.
/// - how to prepare input and output data map.
/// - how to evaluate a model.
/// - how to retrieve evaluation result and retrieve output data in dense format.
/// </summary>
/// <param name="device">Specify on which device to run the evaluation.</param>
public static void EvaluationBatchOfImages(DeviceDescriptor device)
{
try
{
Console.WriteLine("\n===== Evaluate batch of images =====");
string modelFilePath = ExampleTestDataDir + "resnet20.dnn";
// This program uses images from the CIFAR-10 dataset for evaluation.
// Please see README.md in <CNTK>/Examples/Image/DataSets/CIFAR-10 about how to download the CIFAR-10 dataset.
var imageList = new List<string>() { ExampleTestDataDir + "00000.png", ExampleTestDataDir + "00001.png", ExampleTestDataDir + "00002.png" };
foreach (var image in imageList)
{
ThrowIfFileNotExist(image, string.Format("Error: The sample image '{0}' does not exist. Please see README.md in <CNTK>/Examples/Image/DataSets/CIFAR-10 about how to download the CIFAR-10 dataset.", image));
}
ThrowIfFileNotExist(modelFilePath, string.Format("Error: The model '{0}' does not exist. Please follow instructions in README.md in <CNTK>/Examples/Image/Classification/ResNet to create the model.", modelFilePath));
// Load the model.
// The model resnet20.dnn is trained by <CNTK>/Examples/Image/Classification/ResNet/Python/TrainResNet_CIFAR10.py
// Please see README.md in <CNTK>/Examples/Image/Classification/ResNet about how to train the model.
Function modelFunc = Function.Load(modelFilePath, device);
// Get input variable. The model has only one single input.
// The same way described above for output variable can be used here to get input variable by name.
Variable inputVar = modelFunc.Arguments.Single();
// Get shape data for the input variable
NDShape inputShape = inputVar.Shape;
int imageWidth = inputShape[0];
int imageHeight = inputShape[1];
Bitmap bmp, resized;
List<float> resizedCHW;
var seqData = new List<float>();
for (int sampleIndex = 0; sampleIndex < imageList.Count; sampleIndex++)
{
bmp = new Bitmap(Bitmap.FromFile(imageList[sampleIndex]));
resized = bmp.Resize(imageWidth, imageHeight, true);
resizedCHW = resized.ParallelExtractCHW();
// Add this sample to the data buffer.
seqData.AddRange(resizedCHW);
}
// Create Value for the batch data.
var inputVal = Value.CreateBatch(inputVar.Shape, seqData, device);
// Create input data map.
var inputDataMap = new Dictionary<Variable, Value>();
inputDataMap.Add(inputVar, inputVal);
// The model has only one output.
// You can also use the following way to get output variable by name:
// Variable outputVar = modelFunc.Outputs.Where(variable => string.Equals(variable.Name, outputName)).Single();
Variable outputVar = modelFunc.Output;
// Create output data map. Using null as Value to indicate using system allocated memory.
// Alternatively, create a Value object and add it to the data map.
var outputDataMap = new Dictionary<Variable, Value>();
outputDataMap.Add(outputVar, null);
// Evaluate the model against the batch input
modelFunc.Evaluate(inputDataMap, outputDataMap, device);
// Retrieve the evaluation result.
var outputVal = outputDataMap[outputVar];
var outputData = outputVal.GetDenseData<float>(outputVar);
// Output result
Console.Write("Evaluation result for batch of images: ");
for (int index = 0; index < imageList.Count; index++)
{
Console.Write(imageList[index]);
if (index < imageList.Count - 1)
Console.Write(", ");
else
Console.WriteLine();
}
PrintOutput(outputVar.Shape.TotalSize, outputData);
}
catch (Exception ex)
{
Console.WriteLine("Error: {0}\nCallStack: {1}\n Inner Exception: {2}", ex.Message, ex.StackTrace, ex.InnerException != null ? ex.InnerException.Message : "No Inner Exception");
throw ex;
}
}
/// <summary>
/// The example shows
/// - how to evaluate multiple sample requests in parallel.
/// </summary>
/// <param name="device">Specify on which device to run the evaluation.</param>
public static async Task EvaluateMultipleImagesInParallelAsync(DeviceDescriptor device)
{
Console.WriteLine("\n===== Evaluate multiple images in parallel =====");
string modelFilePath = ExampleTestDataDir + "resnet20.dnn";
ThrowIfFileNotExist(modelFilePath, string.Format("Error: The model '{0}' does not exist. Please follow instructions in README.md in <CNTK>/Examples/Image/Classification/ResNet to create the model.", modelFilePath));
// This program uses images from the CIFAR-10 dataset for evaluation.
// Please see README.md in <CNTK>/Examples/Image/DataSets/CIFAR-10 about how to download the CIFAR-10 dataset.
var imageFiles = new string[] { ExampleTestDataDir + "00000.png", ExampleTestDataDir + "00001.png", ExampleTestDataDir + "00002.png", ExampleTestDataDir + "00003.png", ExampleTestDataDir + "00004.png" };
var imageList = new BlockingCollection<string>();
foreach (var file in imageFiles)
{
ThrowIfFileNotExist(file, string.Format("Error: The sample image '{0}' does not exist. Please see README.md in <CNTK>/Examples/Image/DataSets/CIFAR-10 about how to download the CIFAR-10 dataset.", file));
// For simplicity, we add all images to the BlockingCollection in advance. It is also possible to add new images dynamically.
imageList.Add(file);
}
// Load and clone the model.
// The model resnet20.dnn is trained by <CNTK>/Examples/Image/Classification/ResNet/Python/TrainResNet_CIFAR10.py
// Please see README.md in <CNTK>/Examples/Image/Classification/ResNet about how to train the model.
var modelFunc = Function.Load(modelFilePath, device);
// It is not thread-safe to perform concurrent evaluation requests using the same model function.
// Use clone() to create copies of model function for parallel evaluation.
// ParameterCloningMethod.Share specifies that model parameters are shared between cloned model functions, while
// each model function instance has its own private state for evaluation.
int numOfModelInstances = 3;
List<Function> modelPool = new List<Function>();
modelPool.Add(modelFunc);
for (int i = 1; i < numOfModelInstances; i++)
{
modelPool.Add(modelFunc.Clone(ParameterCloningMethod.Share));
}
// Start to evaluate samples in parallel.
Console.WriteLine(string.Format("Evaluate {0} images in parallel using {1} model instances.", imageList.Count, numOfModelInstances));
var taskList = new List<Task>();
var results = new ConcurrentDictionary<string, IList<IList<float>>>();
foreach (var evalFunc in modelPool)
{
taskList.Add(Task.Factory.StartNew(() =>
{
// Get input and output variables
Variable inputVar = evalFunc.Arguments.Single();
NDShape inputShape = inputVar.Shape;
int imageWidth = inputShape[0];
int imageHeight = inputShape[1];
Variable outputVar = evalFunc.Output;
string image;
// The task exits when no image is available for evaluation.
while (imageList.TryTake(out image) == true)
{
Console.WriteLine(string.Format("Evaluating image {0} using thread {1}.", image, Thread.CurrentThread.ManagedThreadId));
Bitmap bmp = new Bitmap(Bitmap.FromFile(image));
var resized = bmp.Resize(imageWidth, imageHeight, true);
List<float> resizedCHW = resized.ParallelExtractCHW();
// Create input data map.
var inputDataMap = new Dictionary<Variable, Value>();
var inputVal = Value.CreateBatch(inputShape, resizedCHW, device);
inputDataMap.Add(inputVar, inputVal);
// Create output data map.
var outputDataMap = new Dictionary<Variable, Value>();
outputDataMap.Add(outputVar, null);
// Start evaluation on the device
evalFunc.Evaluate(inputDataMap, outputDataMap, device);
// Get evaluate result as dense output
var outputVal = outputDataMap[outputVar];
var outputData = outputVal.GetDenseData<float>(outputVar);
// Add result to the buffer for output at a later time.
if (results.TryAdd(image, outputData) == false)
throw new ArgumentException(string.Format("The image {0} has already been evaluated.", image));
}
}));
}
// Await until all images have been evaluated.
await Task.WhenAll(taskList);
var sampleSize = modelFunc.Output.Shape.TotalSize;
foreach (var file in imageFiles)
{
if (!results.ContainsKey(file))
throw new KeyNotFoundException(string.Format("Error: the image {0} has not been evaluated.", file));
var evalResult = results[file];
Console.WriteLine("Evaluation result for image " + file);
PrintOutput(sampleSize, evalResult);
}
}
/// <summary>
/// The example shows
/// - how to load model from a memory buffer.
/// </summary>
/// <param name="device">Specify on which device to run the evaluation.</param>
public static void LoadModelFromMemory(DeviceDescriptor device)
{
try
{
Console.WriteLine("\n===== Load model from memory buffer =====");
// For demo purpose, we first read the model into memory
// The model resnet20.dnn is trained by <CNTK>/Examples/Image/Classification/ResNet/Python/TrainResNet_CIFAR10.py
// Please see README.md in <CNTK>/Examples/Image/Classification/ResNet about how to train the model.
string modelFilePath = ExampleTestDataDir + "resnet20.dnn";
ThrowIfFileNotExist(modelFilePath, string.Format("Error: The model '{0}' does not exist. Please follow instructions in README.md in <CNTK>/Examples/Image/Classification/ResNet to create the model.", modelFilePath));
var modelBuffer = File.ReadAllBytes(modelFilePath);
// Load model from memory buffer
Function modelFunc = Function.Load(modelBuffer, device);
// Get shape data for the input variable
Variable inputVar = modelFunc.Arguments.Single();
NDShape inputShape = inputVar.Shape;
int imageWidth = inputShape[0];
int imageHeight = inputShape[1];
// Image preprocessing to match input requirements of the model.
// This program uses images from the CIFAR-10 dataset for evaluation.
// Please see README.md in <CNTK>/Examples/Image/DataSets/CIFAR-10 about how to download the CIFAR-10 dataset.
ThrowIfFileNotExist(SampleImage, string.Format("Error: The sample image '{0}' does not exist. Please see README.md in <CNTK>/Examples/Image/DataSets/CIFAR-10 about how to download the CIFAR-10 dataset.", SampleImage));
Bitmap bmp = new Bitmap(Bitmap.FromFile(SampleImage));
var resized = bmp.Resize(imageWidth, imageHeight, true);
List<float> resizedCHW = resized.ParallelExtractCHW();
// Create input data map.
var inputDataMap = new Dictionary<Variable, Value>();
var inputVal = Value.CreateBatch(inputVar.Shape, resizedCHW, device);
inputDataMap.Add(inputVar, inputVal);
// Get output variable.
Variable outputVar = modelFunc.Output;
// Create output data map. Using null as Value to indicate using system allocated memory.
// Alternatively, create a Value object and add it to the data map.
var outputDataMap = new Dictionary<Variable, Value>();
outputDataMap.Add(outputVar, null);
// Start evaluation on the device.
modelFunc.Evaluate(inputDataMap, outputDataMap, device);
// Get evaluate result as dense output.
var outputVal = outputDataMap[outputVar];
var outputData = outputVal.GetDenseData<float>(outputVar);
PrintOutput(outputVar.Shape.TotalSize, outputData);
}
catch (Exception ex)
{
Console.WriteLine("Error: {0}\nCallStack: {1}\n Inner Exception: {2}", ex.Message, ex.StackTrace, ex.InnerException != null ? ex.InnerException.Message : "No Inner Exception");
throw ex;
}
}
/// <summary>
/// The example shows
/// - how to evaluate model using asynchronous task. This is useful when offloading is needed to achieve better responsiveness.
/// The asynchronous evaluation is implemented as an extension method in CNTKExtensions.cs, which provides an asynchronous facade for the synchronous Evaluation().
/// </summary>
/// <param name="device">Specify on which device to run the evaluation.</param>
public static async Task EvaluationSingleImageAsync(DeviceDescriptor device)
{
try
{
Console.WriteLine("\n===== Evaluate image asynchronously =====");
// Load the model.
// The model resnet20.dnn is trained by <CNTK>/Examples/Image/Classification/ResNet/Python/Models/TrainResNet_CIFAR10.py
// Please see README.md in <CNTK>/Examples/Image/Classification/ResNet about how to train the model.
string modelFilePath = ExampleTestDataDir + "resnet20.dnn";
ThrowIfFileNotExist(modelFilePath, string.Format("Error: The model '{0}' does not exist. Please follow instructions in README.md in <CNTK>/Examples/Image/Classification/ResNet to create the model.", modelFilePath));
Function modelFunc = Function.Load(modelFilePath, device);
// Get input variable.
Variable inputVar = modelFunc.Arguments.Single();
// Get shape data for the input variable.
NDShape inputShape = inputVar.Shape;
int imageWidth = inputShape[0];
int imageHeight = inputShape[1];
// Image preprocessing to match input requirements of the model.
// This program uses images from the CIFAR-10 dataset for evaluation.
// Please see README.md in <CNTK>/Examples/Image/DataSets/CIFAR-10 about how to download the CIFAR-10 dataset.
ThrowIfFileNotExist(SampleImage, string.Format("Error: The sample image '{0}' does not exist. Please see README.md in <CNTK>/Examples/Image/DataSets/CIFAR-10 about how to download the CIFAR-10 dataset.", SampleImage));
Bitmap bmp = new Bitmap(Bitmap.FromFile(SampleImage));
var resized = bmp.Resize(imageWidth, imageHeight, true);
List<float> resizedCHW = resized.ParallelExtractCHW();
// Create input data map.
var inputDataMap = new Dictionary<Variable, Value>();
var inputVal = Value.CreateBatch(inputShape, resizedCHW, device);
inputDataMap.Add(inputVar, inputVal);
// Get output variable.
Variable outputVar = modelFunc.Output;
// Create output data map. Using null as Value to indicate using system allocated memory.
// Alternatively, create a Value object and add it to the data map.
var outputDataMap = new Dictionary<Variable, Value>();
outputDataMap.Add(outputVar, null);
// Start evaluation, await on the result.
await modelFunc.EvaluateAsync(inputDataMap, outputDataMap, device);
// Get evaluate result as dense output.
var outputVal = outputDataMap[outputVar];
var outputData = outputVal.GetDenseData<float>(outputVar);
PrintOutput(outputVar.Shape.TotalSize, outputData);
}
catch (Exception ex)
{
Console.WriteLine("Error: {0}\nCallStack: {1}\n Inner Exception: {2}", ex.Message, ex.StackTrace, ex.InnerException != null ? ex.InnerException.Message : "No Inner Exception");
throw ex;
}
}
/// <summary>
/// Print out the evaluation results.
/// </summary>
/// <typeparam name="T">The data value type</typeparam>
/// <param name="sampleSize">The size of each sample.</param>
/// <param name="outputBuffer">The evaluation result data.</param>
internal static void PrintOutput<T>(int sampleSize, IList<IList<T>> outputBuffer)
{
Console.WriteLine("The number of sequences in the batch: " + outputBuffer.Count);
int seqNo = 0;
int outputSampleSize = sampleSize;
foreach (var seq in outputBuffer)
{
if (seq.Count % outputSampleSize != 0)
{
throw new ApplicationException("The number of elements in the sequence is not a multiple of sample size");
}
Console.WriteLine(String.Format("Sequence {0} contains {1} samples.", seqNo++, seq.Count / outputSampleSize));
int i = 0;
int sampleNo = 0;
foreach (var element in seq)
{
if (i++ % outputSampleSize == 0)
{
Console.Write(String.Format(" sample {0}: ", sampleNo));
}
Console.Write(element);
if (i % outputSampleSize == 0)
{
Console.WriteLine(".");
sampleNo++;
}
else
{
Console.Write(",");
}
}
}
}
/// <summary>
/// The example shows
/// - how to load model.
/// - how to prepare input data as sequence using one-hot vector.
/// - how to prepare input and output data map.
/// - how to evaluate a model.
/// - how to retrieve evaluation result.
/// </summary>
/// <param name="device">Specify on which device to run the evaluation</param>
public static void EvaluationSingleSequenceUsingOneHot(DeviceDescriptor device)
{
try
{
Console.WriteLine("\n===== Evaluate single sequence using one-hot vector =====");
// The model atis.dnn is trained by <CNTK>/Examples/LanguageUnderstanding/ATIS/Python/LanguageUnderstanding.py
// Please see README.md in <CNTK>/Examples/LanguageUnderstanding/ATIS about how to train the model.
string modelFilePath = ExampleTestDataDir + "atis.dnn";
ThrowIfFileNotExist(modelFilePath, string.Format("Error: The model '{0}' does not exist. Please follow instructions in README.md in <CNTK>/Examples/LanguageUnderstanding/ATIS to create the model.", modelFilePath));
Function modelFunc = Function.Load(modelFilePath, device);
// Read word and slot index files.
ThrowIfFileNotExist(VocabFile, string.Format("Error: The file '{0}' does not exist. Please copy it from <CNTK>/Examples/LanguageUnderstanding/ATIS/BrainScript/ to the output directory.", VocabFile));
ThrowIfFileNotExist(LabelFile, string.Format("Error: The file '{0}' does not exist. Please copy it from <CNTK>/Examples/LanguageUnderstanding/ATIS/BrainScript/ to the output directory.", LabelFile));
var vocabToIndex = buildVocabIndex(VocabFile);
var indexToSlots = buildSlotIndex(LabelFile);
// Get input variable
var inputVar = modelFunc.Arguments.Single();
int vocabSize = inputVar.Shape.TotalSize;
var inputSentence = "BOS i would like to find a flight from charlotte to las vegas that makes a stop in st. louis EOS";
var seqData = new List<int>();
// SeqStartFlag is used to indicate whether this sequence is a new sequence (true) or concatenating the previous sequence (false).
var seqStartFlag = true;
// Get the index of each word in the sentence.
string[] inputWords = inputSentence.Split(' ');
foreach (var str in inputWords)
{
// Get the index of the word
var index = vocabToIndex[str];
// Add the sample to the sequence
seqData.Add(index);
}
// Create input value using OneHot vector data.
var inputValue = Value.CreateSequence<float>(vocabSize, seqData, seqStartFlag, device);
// Build input data map.
var inputDataMap = new Dictionary<Variable, Value>();
inputDataMap.Add(inputVar, inputValue);
// Prepare output.
Variable outputVar = modelFunc.Output;
// Create output data map. Using null as Value to indicate using system allocated memory.
var outputDataMap = new Dictionary<Variable, Value>();
outputDataMap.Add(outputVar, null);
// Evaluate the model.
modelFunc.Evaluate(inputDataMap, outputDataMap, device);
// Get output result.
var outputVal = outputDataMap[outputVar];
var outputData = outputVal.GetDenseData<float>(outputVar);
// output the result.
var outputSampleSize = outputVar.Shape.TotalSize;
if (outputData.Count != 1)
{
throw new ApplicationException("Only one sequence of slots is expected as output.");
}
var slotSeq = outputData[0];
if (slotSeq.Count % outputSampleSize != 0)
{
throw new ApplicationException("The number of elements in the slot sequence is not a multiple of sample size");
}
var numOfSlotsInOutput = slotSeq.Count / outputSampleSize;
if (inputWords.Count() != numOfSlotsInOutput)
{
throw new ApplicationException("The number of input words and the number of output slots do not match");
}
for (int i = 0; i < numOfSlotsInOutput; i++)
{
var max = slotSeq[i * outputSampleSize];
var maxIndex = 0;
for (int j = 1; j < outputSampleSize; j++)
{
if (slotSeq[i * outputSampleSize + j] > max)
{
max = slotSeq[i * outputSampleSize + j];
maxIndex = j;
}
}
Console.WriteLine(String.Format(" {0, 10} ---- {1}", inputWords[i], indexToSlots[maxIndex]));
}
Console.WriteLine();
}
catch (Exception ex)
{
Console.WriteLine("Error: {0}\nCallStack: {1}\n Inner Exception: {2}", ex.Message, ex.StackTrace, ex.InnerException != null ? ex.InnerException.Message : "No Inner Exception");
throw ex;
}
}
/// <summary>
/// The example shows
/// - how to load model.
/// - how to prepare input data as batch of sequences with variable length.
/// how to prepare data using one-hot vector format.
/// - how to prepare input and output data map.
/// - how to evaluate a model.
/// </summary>
/// <param name="device">Specify on which device to run the evaluation.</param>
public static void EvaluationBatchOfSequencesUsingOneHot(DeviceDescriptor device)
{
try
{
Console.WriteLine("\n===== Evaluate batch of sequences with variable length using one-hot vector =====");
// The model atis.dnn is trained by <CNTK>/Examples/LanguageUnderstanding/ATIS/Python/LanguageUnderstanding.py
// Please see README.md in <CNTK>/Examples/LanguageUnderstanding/ATIS about how to train the model.
string modelFilePath = ExampleTestDataDir + "atis.dnn";
ThrowIfFileNotExist(modelFilePath, string.Format("Error: The model '{0}' does not exist. Please follow instructions in README.md in <CNTK>/Examples/LanguageUnderstanding/ATIS to create the model.", modelFilePath));
Function modelFunc = Function.Load(modelFilePath, device);
// Read word and slot index files.
ThrowIfFileNotExist(VocabFile, string.Format("Error: The file '{0}' does not exist. Please copy it from <CNTK>/Examples/LanguageUnderstanding/ATIS/BrainScript/ to the output directory.", VocabFile));
ThrowIfFileNotExist(LabelFile, string.Format("Error: The file '{0}' does not exist. Please copy it from <CNTK>/Examples/LanguageUnderstanding/ATIS/BrainScript/ to the output directory.", LabelFile));
var vocabToIndex = buildVocabIndex(VocabFile);
var indexToSlots = buildSlotIndex(LabelFile);
// Get input variable.
var inputVar = modelFunc.Arguments.Single();
int vocabSize = inputVar.Shape.TotalSize;
// Prepare input data.
// Each sample is represented by an index to the onehot vector, so the index of the non-zero value of each sample is saved in the inner list.
// The outer list represents sequences contained in the batch.
var inputBatch = new List<List<int>>();
// SeqStartFlagBatch is used to indicate whether this sequence is a new sequence (true) or concatenating the previous sequence (false).
var seqStartFlagBatch = new List<bool>();
var inputSentences = new List<string>() {
"BOS i would like to find a flight from charlotte to las vegas that makes a stop in st. louis EOS",
"BOS flights from new york to seattle EOS"
};
var inputWords = new List<string[]>(2);
int numOfSequences = inputSentences.Count;
for (int seqIndex = 0; seqIndex < numOfSequences; seqIndex++)
{
// The input for one sequence
// Get the index of each word in the sentence.
var substring = inputSentences[seqIndex].Split(' ');
inputWords.Add(substring);
var seqData = new List<int>();
foreach (var str in substring)
{
var index = vocabToIndex[str];
seqData.Add(index);
}
inputBatch.Add(seqData);
seqStartFlagBatch.Add(true);
}
// Create the Value representing the batch data.
var inputValue = Value.CreateBatchOfSequences<float>(vocabSize, inputBatch, seqStartFlagBatch, device);
// Build input data map.
var inputDataMap = new Dictionary<Variable, Value>();
inputDataMap.Add(inputVar, inputValue);
// Prepare output.
Variable outputVar = modelFunc.Output;
// Create output data map. Using null as Value to indicate using system allocated memory.
var outputDataMap = new Dictionary<Variable, Value>();
outputDataMap.Add(outputVar, null);
// Evaluate the model
modelFunc.Evaluate(inputDataMap, outputDataMap, device);
// Get evaluation result.
var outputVal = outputDataMap[outputVar];
var outputData = outputVal.GetDenseData<float>(outputVar);
// output the result
var outputSampleSize = outputVar.Shape.TotalSize;
if (outputData.Count != inputBatch.Count)
{
throw new ApplicationException("The number of sequence in output does not match that in input.");
}
Console.WriteLine("The number of sequences in the batch: " + outputData.Count);
for (int seqno = 0; seqno < outputData.Count; seqno++)
{
var slotSeq = outputData[seqno];
Console.WriteLine("Sequence {0}: ", seqno);
if (slotSeq.Count % outputSampleSize != 0)
{
throw new ApplicationException("The number of elements in the slot sequence is not a multiple of sample size");
}
var numOfSlotsInOutput = slotSeq.Count / outputSampleSize;
if (inputWords[seqno].Count() != numOfSlotsInOutput)
{
throw new ApplicationException("The number of input words and the number of output slots do not match.");
}
for (int i = 0; i < numOfSlotsInOutput; i++)
{
var max = slotSeq[i * outputSampleSize];
var maxIndex = 0;
for (int j = 1; j < outputSampleSize; j++)
{
if (slotSeq[i * outputSampleSize + j] > max)
{
max = slotSeq[i * outputSampleSize + j];
maxIndex = j;
}
}
Console.WriteLine(String.Format(" {0, 10} ---- {1}", inputWords[seqno][i], indexToSlots[maxIndex]));
}
Console.WriteLine();
}
}
catch (Exception ex)
{
Console.WriteLine("Error: {0}\nCallStack: {1}\n Inner Exception: {2}", ex.Message, ex.StackTrace, ex.InnerException != null ? ex.InnerException.Message : "No Inner Exception");
throw ex;
}
}
/// <summary>
/// The example shows
/// - how to prepare input data as sequence using sparse input.
/// </summary>
/// <param name="device">Specify on which device to run the evaluation</param>
public static void EvaluationSingleSequenceUsingSparse(DeviceDescriptor device)
{
try
{
Console.WriteLine("\n===== Evaluate single sequence using sparse input =====");
// The model atis.dnn is trained by <CNTK>/Examples/LanguageUnderstanding/ATIS/Python/LanguageUnderstanding.py
// Please see README.md in <CNTK>/Examples/LanguageUnderstanding/ATIS about how to train the model.
string modelFilePath = ExampleTestDataDir + "atis.dnn";
ThrowIfFileNotExist(modelFilePath, string.Format("Error: The model '{0}' does not exist. Please follow instructions in README.md in <CNTK>/Examples/LanguageUnderstanding/ATIS to create the model.", modelFilePath));
Function modelFunc = Function.Load(modelFilePath, device);
// Read word and slot index files.
ThrowIfFileNotExist(VocabFile, string.Format("Error: The file '{0}' does not exist. Please copy it from <CNTK>/Examples/LanguageUnderstanding/ATIS/BrainScript/ to the output directory.", VocabFile));
ThrowIfFileNotExist(LabelFile, string.Format("Error: The file '{0}' does not exist. Please copy it from <CNTK>/Examples/LanguageUnderstanding/ATIS/BrainScript/ to the output directory.", LabelFile));
var vocabToIndex = buildVocabIndex(VocabFile);
var indexToSlots = buildSlotIndex(LabelFile);
// Get input variable
var inputVar = modelFunc.Arguments.Single();
int vocabSize = inputVar.Shape.TotalSize;
var inputSentence = "BOS i would like to find a flight from charlotte to las vegas that makes a stop in st. louis EOS";
// Get the index of each word in the sentence.
string[] inputWords = inputSentence.Split(' ');
var seqLen = inputWords.Length;
// For this example, only 1 non-zero value for each sample.
var numNonZeroValues = seqLen * 1;
var colStarts = new int[seqLen + 1];
var rowIndices = new int[numNonZeroValues];
var nonZeroValues = new float[numNonZeroValues];
int count = 0;
for (; count < seqLen; count++)
{
// Get the index of the word
var nonZeroValueIndex = vocabToIndex[inputWords[count]];
// Add the sample to the sequence
nonZeroValues[count] = (float)1.0;
rowIndices[count] = nonZeroValueIndex;
colStarts[count] = count;
}
colStarts[count] = numNonZeroValues;
// Create input value using OneHot vector data.
var inputValue = Value.CreateSequence<float>(vocabSize, seqLen, colStarts, rowIndices, nonZeroValues, device);
// Build input data map.
var inputDataMap = new Dictionary<Variable, Value>();
inputDataMap.Add(inputVar, inputValue);
// Prepare output
Variable outputVar = modelFunc.Output;
// Create output data map. Using null as Value to indicate using system allocated memory.
var outputDataMap = new Dictionary<Variable, Value>();
outputDataMap.Add(outputVar, null);
// Evaluate the model.
modelFunc.Evaluate(inputDataMap, outputDataMap, device);
// Get result
var outputVal = outputDataMap[outputVar];
var outputData = outputVal.GetDenseData<float>(outputVar);
// Output the result
var outputSampleSize = outputVar.Shape.TotalSize;
if (outputData.Count != 1)
{
throw new ApplicationException("Only one sequence of slots is expected as output.");
}
var slotSeq = outputData[0];
if (slotSeq.Count % outputSampleSize != 0)
{
throw new ApplicationException("The number of elements in the slot sequence is not a multiple of sample size");
}
var numOfSlotsInOutput = slotSeq.Count / outputSampleSize;
if (inputWords.Count() != numOfSlotsInOutput)
{
throw new ApplicationException("The number of input words and the number of output slots do not match");
}
for (int i = 0; i < numOfSlotsInOutput; i++)
{
var max = slotSeq[i * outputSampleSize];
var maxIndex = 0;
for (int j = 1; j < outputSampleSize; j++)
{
if (slotSeq[i * outputSampleSize + j] > max)
{
max = slotSeq[i * outputSampleSize + j];
maxIndex = j;
}
}
Console.WriteLine(String.Format(" {0, 10} ---- {1}", inputWords[i], indexToSlots[maxIndex]));
}
Console.WriteLine();
}
catch (Exception ex)
{
Console.WriteLine("Error: {0}\nCallStack: {1}\n Inner Exception: {2}", ex.Message, ex.StackTrace, ex.InnerException != null ? ex.InnerException.Message : "No Inner Exception");
throw ex;
}
}
/// <summary>
/// The example shows
/// - how to load a pretrained model and evaluate an intermediate layer of its network
/// </summary>
/// <param name="device">Specify on which device to run the evaluation</param>
public static void EvaluateIntermediateLayer(DeviceDescriptor device)
{
try
{
Console.WriteLine("\n===== Evaluate intermediate layer =====\n");
// Load the model.
// The model resnet20.dnn is trained by <CNTK>/Examples/Image/Classification/ResNet/Python/TrainResNet_CIFAR10.py
// Please see README.md in <CNTK>/Examples/Image/Classification/ResNet about how to train the model.
string modelFilePath = ExampleTestDataDir + "resnet20.dnn";
ThrowIfFileNotExist(modelFilePath, string.Format("Error: The model '{0}' does not exist. Please follow instructions in README.md in <CNTK>/Examples/Image/Classification/ResNet to create the model.", modelFilePath));
Function rootFunc = Function.Load(modelFilePath, device);
Function interLayerPrimitiveFunc = rootFunc.FindByName("final_avg_pooling");
// The Function returned by FindByName is a primitive function.
// For evaluation, it is required to create a composite function from the primitive function.
Function modelFunc = Function.AsComposite(interLayerPrimitiveFunc);
Variable outputVar = modelFunc.Output;
Variable inputVar = modelFunc.Arguments.Single();
// Get shape data for the input variable
NDShape inputShape = inputVar.Shape;
int imageWidth = inputShape[0];
int imageHeight = inputShape[1];
int imageChannels = inputShape[2];
int imageSize = inputShape.TotalSize;
var inputDataMap = new Dictionary<Variable, Value>();
var outputDataMap = new Dictionary<Variable, Value>();
// Image preprocessing to match input requirements of the model.
// This program uses images from the CIFAR-10 dataset for evaluation.
// Please see README.md in <CNTK>/Examples/Image/DataSets/CIFAR-10 about how to download the CIFAR-10 dataset.
ThrowIfFileNotExist(SampleImage, string.Format("Error: The sample image '{0}' does not exist. Please see README.md in <CNTK>/Examples/Image/DataSets/CIFAR-10 about how to download the CIFAR-10 dataset.", SampleImage));
Bitmap bmp = new Bitmap(Bitmap.FromFile(SampleImage));
var resized = bmp.Resize((int)imageWidth, (int)imageHeight, true);
List<float> resizedCHW = resized.ParallelExtractCHW();
// Create input data map
var inputVal = Value.CreateBatch(inputVar.Shape, resizedCHW, device);
inputDataMap.Add(inputVar, inputVal);
// Create output data map. Using null as Value to indicate using system allocated memory.
// Alternatively, create a Value object and add it to the data map.
outputDataMap.Add(outputVar, null);
// Start evaluation on the device
modelFunc.Evaluate(inputDataMap, outputDataMap, device);
// Get evaluate result as dense output
var outputVal = outputDataMap[outputVar];
var outputData = outputVal.GetDenseData<float>(outputVar);
Console.WriteLine("Evaluation result of intermediate layer final_avg_pooling");
PrintOutput(outputVar.Shape.TotalSize, outputData);
}
catch (Exception ex)
{
Console.WriteLine("Error: {0}\nCallStack: {1}\n Inner Exception: {2}", ex.Message, ex.StackTrace, ex.InnerException != null ? ex.InnerException.Message : "No Inner Exception");
throw ex;
}
}
/// <summary>
/// The example shows
/// - how to load a pretrained model and evaluate several nodes by combining their outputs
/// </summary>
/// <param name="device">Specify on which device to run the evaluation</param>
public static void EvaluateCombinedOutputs(DeviceDescriptor device)
{
try
{
Console.WriteLine("\n===== Evaluate combined outputs =====\n");
// Load the model.
// The model resnet20.dnn is trained by <CNTK>/Examples/Image/Classification/ResNet/Python/TrainResNet_CIFAR10.py
// Please see README.md in <CNTK>/Examples/Image/Classification/ResNet about how to train the model.
string modelFilePath = ExampleTestDataDir + "resnet20.dnn";
ThrowIfFileNotExist(modelFilePath, string.Format("Error: The model '{0}' does not exist. Please follow instructions in README.md in <CNTK>/Examples/Image/Classification/ResNet to create the model.", modelFilePath));
Function modelFunc = Function.Load(modelFilePath, device);
// Get node of interest
Function interLayerPrimitiveFunc = modelFunc.FindByName("final_avg_pooling");
Variable poolingOutput = interLayerPrimitiveFunc.Output;
// Create a function which combine outputs from the node "final_avg_polling" and the final layer of the model.
Function evalFunc = Function.Combine(new[] { modelFunc.Output, poolingOutput });
Variable inputVar = evalFunc.Arguments.Single();
// Get shape data for the input variable
NDShape inputShape = inputVar.Shape;
int imageWidth = inputShape[0];
int imageHeight = inputShape[1];
int imageChannels = inputShape[2];
int imageSize = inputShape.TotalSize;
var inputDataMap = new Dictionary<Variable, Value>();
var outputDataMap = new Dictionary<Variable, Value>();
// Image preprocessing to match input requirements of the model.
// This program uses images from the CIFAR-10 dataset for evaluation.
// Please see README.md in <CNTK>/Examples/Image/DataSets/CIFAR-10 about how to download the CIFAR-10 dataset.
ThrowIfFileNotExist(SampleImage, string.Format("Error: The sample image '{0}' does not exist. Please see README.md in <CNTK>/Examples/Image/DataSets/CIFAR-10 about how to download the CIFAR-10 dataset.", SampleImage));
Bitmap bmp = new Bitmap(Bitmap.FromFile(SampleImage));
var resized = bmp.Resize((int)imageWidth, (int)imageHeight, true);
List<float> resizedCHW = resized.ParallelExtractCHW();
// Create input data map
var inputVal = Value.CreateBatch(inputVar.Shape, resizedCHW, device);
inputDataMap.Add(inputVar, inputVal);
// Create output data map. Using null as Value to indicate using system allocated memory.
// Alternatively, create a Value object and add it to the data map.
var modelOutput = evalFunc.Outputs[0];
var interLayerOutput = evalFunc.Outputs[1];
outputDataMap.Add(modelOutput, null);
outputDataMap.Add(interLayerOutput, null);
// Start evaluation on the device
evalFunc.Evaluate(inputDataMap, outputDataMap, device);
// Get evaluate result as dense output
foreach (var outputVariableValuePair in outputDataMap)
{
var variable = outputVariableValuePair.Key;
var value = outputVariableValuePair.Value;
var outputData = value.GetDenseData<float>(variable);
string variableName = "last layer of the model";
if (variable.Name == interLayerPrimitiveFunc.Name) {
variableName = "intermediate layer " + variable.Name;
}
Console.WriteLine("Evaluation result of {0}", variableName);
PrintOutput(variable.Shape.TotalSize, outputData);
}
}
catch (Exception ex)
{
Console.WriteLine("Error: {0}\nCallStack: {1}\n Inner Exception: {2}", ex.Message, ex.StackTrace, ex.InnerException != null ? ex.InnerException.Message : "No Inner Exception");
throw ex;
}
}
/// <summary>
/// Checks whether the file exists. If not, write the error message on the console and throw FileNotFoundException.
/// </summary>
/// <param name="filePath">The file to check.</param>
/// <param name="errorMsg">The message to write on console if the file does not exist.</param>
internal static void ThrowIfFileNotExist(string filePath, string errorMsg)
{
if (!File.Exists(filePath))
{
if (!string.IsNullOrEmpty(errorMsg))