This repository has been archived by the owner on Sep 18, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1.8k
/
Copy pathmain.py
204 lines (168 loc) · 6.02 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
'''Train CIFAR10 with PyTorch.'''
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
import os
import argparse
import logging
from models import *
from utils import progress_bar
import nni
_logger = logging.getLogger("cifar10_pytorch_automl")
trainloader = None
testloader = None
net = None
criterion = None
optimizer = None
device = 'cuda' if torch.cuda.is_available() else 'cpu'
best_acc = 0.0 # best test accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
def prepare(args):
global trainloader
global testloader
global net
global criterion
global optimizer
# Data
print('==> Preparing data..')
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)
#classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
# Model
print('==> Building model..')
if args['model'] == 'vgg':
net = VGG('VGG19')
if args['model'] == 'resnet18':
net = ResNet18()
if args['model'] == 'googlenet':
net = GoogLeNet()
if args['model'] == 'densenet121':
net = DenseNet121()
if args['model'] == 'mobilenet':
net = MobileNet()
if args['model'] == 'dpn92':
net = DPN92()
if args['model'] == 'shufflenetg2':
net = ShuffleNetG2()
if args['model'] == 'senet18':
net = SENet18()
net = net.to(device)
if device == 'cuda':
net = torch.nn.DataParallel(net)
cudnn.benchmark = True
criterion = nn.CrossEntropyLoss()
#optimizer = optim.SGD(net.parameters(), lr=args['lr'], momentum=0.9, weight_decay=5e-4)
if args['optimizer'] == 'SGD':
optimizer = optim.SGD(net.parameters(), lr=args['lr'], momentum=0.9, weight_decay=5e-4)
if args['optimizer'] == 'Adadelta':
optimizer = optim.Adadelta(net.parameters(), lr=args['lr'])
if args['optimizer'] == 'Adagrad':
optimizer = optim.Adagrad(net.parameters(), lr=args['lr'])
if args['optimizer'] == 'Adam':
optimizer = optim.Adam(net.parameters(), lr=args['lr'])
if args['optimizer'] == 'Adamax':
optimizer = optim.Adam(net.parameters(), lr=args['lr'])
# Training
def train(epoch, batches=-1):
global trainloader
global testloader
global net
global criterion
global optimizer
print('\nEpoch: %d' % epoch)
net.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(trainloader):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
acc = 100.*correct/total
progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (train_loss/(batch_idx+1), 100.*correct/total, correct, total))
if batches > 0 and (batch_idx+1) >= batches:
return
def test(epoch):
global best_acc
global trainloader
global testloader
global net
global criterion
global optimizer
net.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
acc = 100.*correct/total
progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (test_loss/(batch_idx+1), 100.*correct/total, correct, total))
# Save checkpoint.
acc = 100.*correct/total
if acc > best_acc:
print('Saving..')
state = {
'net': net.state_dict(),
'acc': acc,
'epoch': epoch,
}
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
torch.save(state, './checkpoint/ckpt.t7')
best_acc = acc
return acc, best_acc
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--epochs", type=int, default=200)
# Maximum mini-batches per epoch, for code testing purpose
parser.add_argument("--batches", type=int, default=-1)
args, _ = parser.parse_known_args()
try:
RCV_CONFIG = nni.get_next_parameter()
#RCV_CONFIG = {'lr': 0.1, 'optimizer': 'Adam', 'model':'senet18'}
_logger.debug(RCV_CONFIG)
prepare(RCV_CONFIG)
acc = 0.0
best_acc = 0.0
for epoch in range(start_epoch, start_epoch+args.epochs):
train(epoch, args.batches)
acc, best_acc = test(epoch)
nni.report_intermediate_result(acc)
nni.report_final_result(best_acc)
except Exception as exception:
_logger.exception(exception)
raise