-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathiris_data_classification_bpnn_V2.py
257 lines (195 loc) · 8.13 KB
/
iris_data_classification_bpnn_V2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import pandas as pd
import numpy as np
import datetime
import matplotlib.pyplot as plt
from pandas.plotting import radviz
'''
构建一个具有1个隐藏层的神经网络,隐层的大小为10
输入层为4个特征,输出层为3个分类
(1,0,0)为第一类,(0,1,0)为第二类,(0,0,1)为第三类
'''
# 1.初始化参数
def initialize_parameters(n_x, n_h, n_y):
np.random.seed(2)
# 权重和偏置矩阵
w1 = np.random.randn(n_h, n_x) * 0.01
b1 = np.zeros(shape=(n_h, 1))
w2 = np.random.randn(n_y, n_h) * 0.01
b2 = np.zeros(shape=(n_y, 1))
# 通过字典存储参数
parameters = {'w1': w1, 'b1': b1, 'w2': w2, 'b2': b2}
return parameters
# 2.前向传播
def forward_propagation(X, parameters):
w1 = parameters['w1']
b1 = parameters['b1']
w2 = parameters['w2']
b2 = parameters['b2']
# 通过前向传播来计算a2
z1 = np.dot(w1, X) + b1 # 这个地方需注意矩阵加法:虽然(w1*X)和b1的维度不同,但可以相加
a1 = np.tanh(z1) # 使用tanh作为第一层的激活函数
z2 = np.dot(w2, a1) + b2
a2 = 1 / (1 + np.exp(-z2)) # 使用sigmoid作为第二层的激活函数
# 通过字典存储参数
cache = {'z1': z1, 'a1': a1, 'z2': z2, 'a2': a2}
return a2, cache
# 3.计算代价函数
def compute_cost(a2, Y):
m = Y.shape[1] # Y的列数即为总的样本数
# 采用交叉熵(cross-entropy)作为代价函数
logprobs = np.multiply(np.log(a2), Y) + np.multiply((1 - Y), np.log(1 - a2))
cost = - np.sum(logprobs) / m
return cost
# 4.反向传播(计算代价函数的导数)
def backward_propagation(parameters, cache, X, Y):
m = Y.shape[1]
w2 = parameters['w2']
a1 = cache['a1']
a2 = cache['a2']
# 反向传播,计算dw1、db1、dw2、db2
dz2 = a2 - Y
dw2 = (1 / m) * np.dot(dz2, a1.T)
db2 = (1 / m) * np.sum(dz2, axis=1, keepdims=True)
dz1 = np.multiply(np.dot(w2.T, dz2), 1 - np.power(a1, 2))
dw1 = (1 / m) * np.dot(dz1, X.T)
db1 = (1 / m) * np.sum(dz1, axis=1, keepdims=True)
grads = {'dw1': dw1, 'db1': db1, 'dw2': dw2, 'db2': db2}
return grads
# 5.更新参数
def update_parameters(parameters, grads, learning_rate=0.4):
w1 = parameters['w1']
b1 = parameters['b1']
w2 = parameters['w2']
b2 = parameters['b2']
dw1 = grads['dw1']
db1 = grads['db1']
dw2 = grads['dw2']
db2 = grads['db2']
# 更新参数
w1 = w1 - dw1 * learning_rate
b1 = b1 - db1 * learning_rate
w2 = w2 - dw2 * learning_rate
b2 = b2 - db2 * learning_rate
parameters = {'w1': w1, 'b1': b1, 'w2': w2, 'b2': b2}
return parameters
# 建立神经网络
def nn_model(X, Y, n_h, n_input, n_output, num_iterations=10000, print_cost=False):
np.random.seed(3)
n_x = n_input # 输入层节点数
n_y = n_output # 输出层节点数
# 1.初始化参数
parameters = initialize_parameters(n_x, n_h, n_y)
# 梯度下降循环
for i in range(0, num_iterations):
# 2.前向传播
a2, cache = forward_propagation(X, parameters)
# 3.计算代价函数
cost = compute_cost(a2, Y)
# 4.反向传播
grads = backward_propagation(parameters, cache, X, Y)
# 5.更新参数
parameters = update_parameters(parameters, grads)
# 每1000次迭代,输出一次代价函数
if print_cost and i % 1000 == 0:
print('迭代第%i次,代价函数为:%f' % (i, cost))
return parameters
# 6.模型评估
def predict(parameters, x_test, y_test):
w1 = parameters['w1']
b1 = parameters['b1']
w2 = parameters['w2']
b2 = parameters['b2']
z1 = np.dot(w1, x_test) + b1
a1 = np.tanh(z1)
z2 = np.dot(w2, a1) + b2
a2 = 1 / (1 + np.exp(-z2))
# 结果的维度
n_rows = y_test.shape[0]
n_cols = y_test.shape[1]
# 预测值结果存储
output = np.empty(shape=(n_rows, n_cols), dtype=int)
for i in range(n_rows):
for j in range(n_cols):
if a2[i][j] > 0.5:
output[i][j] = 1
else:
output[i][j] = 0
print('预测结果:', output)
print('真实结果:', y_test)
count = 0
for k in range(0, n_cols):
if output[0][k] == y_test[0][k] and output[1][k] == y_test[1][k] and output[2][k] == y_test[2][k]:
count = count + 1
else:
print('错误分类样本的序号:', k + 1)
acc = count / int(y_test.shape[1]) * 100
print('准确率:%.2f%%' % acc)
return output
# 7.结果可视化
# 特征有4个维度,类别有1个维度,一共5个维度,故采用了RadViz图
def result_visualization(x_test, y_test, result):
cols = y_test.shape[1]
y = []
pre = []
# 反转换类别的独热编码
for i in range(cols):
if y_test[0][i] == 0 and y_test[1][i] == 0 and y_test[2][i] == 1:
y.append('setosa')
elif y_test[0][i] == 0 and y_test[1][i] == 1 and y_test[2][i] == 0:
y.append('versicolor')
elif y_test[0][i] == 1 and y_test[1][i] == 0 and y_test[2][i] == 0:
y.append('virginica')
for j in range(cols):
if result[0][j] == 0 and result[1][j] == 0 and result[2][j] == 1:
pre.append('setosa')
elif result[0][j] == 0 and result[1][j] == 1 and result[2][j] == 0:
pre.append('versicolor')
elif result[0][j] == 1 and result[1][j] == 0 and result[2][j] == 0:
pre.append('virginica')
else:
pre.append('unknown')
# 将特征和类别矩阵拼接起来
real = np.column_stack((x_test.T, y))
prediction = np.column_stack((x_test.T, pre))
# 转换成DataFrame类型,并添加columns
df_real = pd.DataFrame(real, index=None, columns=['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width', 'Species'])
df_prediction = pd.DataFrame(prediction, index=None, columns=['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width', 'Species'])
# 将特征列转换为float类型,否则radviz会报错
df_real[['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width']] = df_real[['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width']].astype(float)
df_prediction[['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width']] = df_prediction[['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width']].astype(float)
# 绘图
plt.figure('真实分类')
radviz(df_real, 'Species', color=['blue', 'green', 'red', 'yellow'])
plt.figure('预测分类')
radviz(df_prediction, 'Species', color=['blue', 'green', 'red', 'yellow'])
plt.show()
if __name__ == "__main__":
# 读取数据
data_set = pd.read_csv('E:\\GitHub\\iris_classification_BPNeuralNetwork\\bpnn_V2数据集\\iris_training.csv', header=None)
# 第1种取数据方法:
X = data_set.iloc[:, 0:4].values.T # 前四列是特征,T表示转置
Y = data_set.iloc[:, 4:].values.T # 后三列是标签
# 第2种取数据方法:
# X = data_set.ix[:, 0:3].values.T
# Y = data_set.ix[:, 4:6].values.T
# 第3种取数据方法:
# X = data_set.loc[:, 0:3].values.T
# Y = data_set.loc[:, 4:6].values.T
# 第4种取数据方法:
# X = data_set[data_set.columns[0:4]].values.T
# Y = data_set[data_set.columns[4:7]].values.T
Y = Y.astype('uint8')
# 开始训练
start_time = datetime.datetime.now()
# 输入4个节点,隐层10个节点,输出3个节点,迭代10000次
parameters = nn_model(X, Y, n_h=10, n_input=4, n_output=3, num_iterations=10000, print_cost=True)
end_time = datetime.datetime.now()
print("用时:" + str((end_time - start_time).seconds) + 's' + str(round((end_time - start_time).microseconds / 1000)) + 'ms')
# 对模型进行测试
data_test = pd.read_csv('E:\\GitHub\\iris_classification_BPNeuralNetwork\\bpnn_V2数据集\\iris_test.csv', header=None)
x_test = data_test.iloc[:, 0:4].values.T
y_test = data_test.iloc[:, 4:].values.T
y_test = y_test.astype('uint8')
result = predict(parameters, x_test, y_test)
# 分类结果可视化
result_visualization(x_test, y_test, result)