-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcartpole_continuous.py
180 lines (149 loc) · 7.03 KB
/
cartpole_continuous.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
"""
Classic cart-pole system with continuous action implemented by Rich Sutton et al.
Copied from http://incompleteideas.net/sutton/book/code/pole.c
permalink: https://perma.cc/C9ZM-652R
"""
import logging
import gym
from gym import spaces, logger
from gym.utils import seeding
import numpy as np
logger = logging.getLogger(__name__)
class CartPoleContinuousEnv(gym.Env):
metadata = {
'render.modes': ['human', 'rgb_array'],
'video.frames_per_second' : 50
}
def __init__(self):
self.gravity = 9.8
self.masscart = 1.0
self.masspole = 0.1
self.total_mass = (self.masspole + self.masscart)
# For some reason in Gym they define this length to be half of the pole's length
self.length = 0.5
self.polemass_length = (self.masspole * self.length)
self.max_force = 2000.0
self.tau = 0.02 # seconds between state updates
# Angle at which to fail the episode (Irrelevant for Optimal Control)
# Note: Changing the size of x_threshold will dynamically change the window-size as well. Smaller values make the cart and pole appear bigger.
self.theta_threshold_radians = 360 * 2 * np.pi / 360
self.x_threshold = 50
# Angle limit set to 2 * theta_threshold_radians so failing observation is still within bounds
high = np.array([
self.x_threshold * 2,
np.finfo(np.float32).max,
self.theta_threshold_radians * 2,
np.finfo(np.float32).max])
# Defines what actions are possible
self.action_space = spaces.Box(low=-self.max_force, high=self.max_force, shape=(1,), dtype=np.float32)
self.observation_space = spaces.Box(-high, high, dtype=np.float32)
self.seed()
self.viewer = None
self.state = None
self.steps_beyond_done = None
def seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
def state_eq(self, st, u):
x, x_dot, theta, theta_dot = st
force = u[0]
costheta = np.cos(theta)
sintheta = np.sin(theta)
temp = (force + self.polemass_length * theta_dot * theta_dot * sintheta) / self.total_mass
thetaacc = (self.gravity * sintheta - costheta* temp) / (self.length * (4.0/3.0 - self.masspole * costheta * costheta / self.total_mass))
xacc = temp - self.polemass_length * thetaacc * costheta / self.total_mass
# The order in which the velocity/position updated were switched according to this issue:
# https://github.com/openai/gym/issues/907
# See original CartPole in Gym for traditional order
x_dot = x_dot + self.tau * xacc
x = x + self.tau * x_dot
theta_dot = theta_dot + self.tau * thetaacc
theta = theta + self.tau * theta_dot
return np.array([x, x_dot, theta, theta_dot])
def step(self, action):
assert self.action_space.contains(action), "%r (%s) invalid"%(action, type(action))
state = self.state
self.state = self.state_eq(state, action)
x, x_dot, theta, theta_dot = self.state
done = x < -self.x_threshold \
or x > self.x_threshold \
or theta < -self.theta_threshold_radians \
or theta > self.theta_threshold_radians
done = bool(done)
if not done:
reward = 1.0
elif self.steps_beyond_done is None:
# Pole just fell!
self.steps_beyond_done = 0
reward = 1.0
else:
if self.steps_beyond_done == 0:
logger.warning("You are calling 'step()' even though this environment has already returned done = True. You should always call 'reset()' once you receive 'done = True' -- any further steps are undefined behavior.")
self.steps_beyond_done += 1
reward = 0.0
return self.state, reward, done, {}
def reset(self):
# Instantiate the cart with random, reasonable values
x = np.random.uniform(low=-3,high=3)
x_dot = np.random.uniform(low=-.25,high=.25)
theta = np.random.uniform(low=-np.pi/4, high=np.pi/4)
theta_dot = np.random.uniform(low=-np.pi/6,high=np.pi/6)
self.state = [x, x_dot, theta, theta_dot]
# For testing you may want to hard-code some kind of default state
# If so, simply uncomment this line and change the values as you see fit.
# self.state = [0, 0, 0.25, 0]
self.steps_beyond_done = None
return np.array(self.state)
def render(self, mode='human'):
# Mess with this function at your own risk.
screen_width = 1000
world_width = self.x_threshold/4
scale = screen_width/world_width
carty = scale / 1.25 # TOP OF CART
polewidth = scale / 12
polelen = scale
cartwidth = scale / 2.5
cartheight = scale / 4
screen_height = round(carty + polewidth + 75)
if self.viewer is None:
from gym.envs.classic_control import rendering
self.viewer = rendering.Viewer(screen_width, screen_height)
l,r,t,b = -cartwidth/2, cartwidth/2, cartheight/2, -cartheight/2
axleoffset =cartheight/4.0
cart = rendering.FilledPolygon([(l,b), (l,t), (r,t), (r,b)])
self.carttrans = rendering.Transform()
cart.add_attr(self.carttrans)
self.viewer.add_geom(cart)
l,r,t,b = -polewidth/2,polewidth/2,polelen-polewidth/2,-polewidth/2
pole = rendering.FilledPolygon([(l,b), (l,t), (r,t), (r,b)])
pole.set_color(.8,.6,.4)
self.poletrans = rendering.Transform(translation=(0, axleoffset))
pole.add_attr(self.poletrans)
pole.add_attr(self.carttrans)
self.viewer.add_geom(pole)
self.axle = rendering.make_circle(polewidth/2)
self.axle.add_attr(self.poletrans)
self.axle.add_attr(self.carttrans)
self.axle.set_color(.5,.5,.8)
self.viewer.add_geom(self.axle)
self.track = rendering.Line((0,carty), (screen_width,carty))
self.track.set_color(0,0,0)
self.viewer.add_geom(self.track)
if self.state is None: return None
x = self.state
cartx = x[0]*scale+screen_width/2.0 # MIDDLE OF CART
self.carttrans.set_translation(cartx, carty)
self.poletrans.set_rotation(-x[2])
return self.viewer.render(return_rgb_array = mode=='rgb_array')
def close(self):
if self.viewer: self.viewer.close()
class StochasticCartPoleContinuousEnv(CartPoleContinuousEnv):
"""
A stochastic version where the mass is randomized at the beginning of each environment
"""
def __init__(self):
super().__init__()
# This may be a bit too random, to be determined
self.masscart = np.random.uniform(low=0.5, high=2.5)
# Update total_mass because it depends on masscart
self.total_mass = (self.masspole + self.masscart)