-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_classifier.py
709 lines (598 loc) · 28.8 KB
/
run_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT finetuning runner."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import csv
import os
import logging
import argparse
import random
from tqdm import tqdm, trange
import numpy as np
import torch
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from torch.utils.data.distributed import DistributedSampler
import tokenization
from modeling import BertConfig, BertForSequenceClassification
from optimization import BERTAdam
import json
import re
from sklearn.metrics import f1_score
from sklearn.metrics import classification_report
from sklearn.metrics import accuracy_score
from transformers import BertModel, BertTokenizer
n_class = 1
reverse_order = False
sa_step = False
MAX_LEN = 512
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
map_pair = {
"per:positive_impression":"person positive impression",
"per:negative_impression":"person negative impression",
"per:acquaintance":"person acquaintance",
"per:alumni":"person alumni",
"per:boss":"person boss",
"per:subordinate":"person subordinate",
"per:client":"person client",
"per:dates":"person dates",
"per:friends":"person friends",
"per:girl/boyfriend":"person girl boyfriend",
"per:neighbor":"person neighbor",
"per:roommate":"person roommate",
"per:children":"person children",
"per:other_family":"person other family",
"per:parents":"person parents",
"per:siblings":"person siblings",
"per:spouse":"person spouse",
"per:place_of_residence":"person place of residence",
"per:place_of_birth":"person place of birth",
"per:visited_place":"person visited place",
"per:origin":"person origin",
"per:employee_or_member_of":"person employee or member of",
"per:schools_attended":"person schools attended",
"per:works":"person works",
"per:age":"person age",
"per:date_of_birth":"person date of birth",
"per:major":"person major",
"per:place_of_work":"person place of work",
"per:title":"person title",
"per:alternate_names":"person alternate names",
"per:pet":"person pet",
"gpe:residents_of_place":"geopolitics entity residents of place",
"gpe:births_in_place":"geopolitics entity births in place",
"gpe:visitors_of_place":"geopolitics entity visitors of place",
"org:employees_or_members":"organization employees or members",
"org:students":"organization students",
}
class InputExample(object):
"""A single training/test example for simple sequence classification."""
def __init__(self, guid, text_a, text_b=None, label=None, text_c=None, text_d=None, id_n=None, text_e=None):
self.guid = guid
self.text_a = text_a # dialogue
self.text_b = text_b # x
self.text_c = text_c # y
self.text_d = text_d # hint(relation class)
self.text_e = text_e # trigger word
self.id_n = id_n
self.label = label
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, input_ids, input_mask, segment_ids, label_id, id_n, t_idx, x_idx):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.label_id = label_id
self.id_n = id_n
self.t_idx = t_idx
self.x_idx = x_idx
class DataProcessor(object):
"""Base class for data converters for sequence classification data sets."""
def get_train_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the train set."""
raise NotImplementedError()
def get_dev_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the dev set."""
raise NotImplementedError()
def get_labels(self):
"""Gets the list of labels for this data set."""
raise NotImplementedError()
@classmethod
def _read_tsv(cls, input_file, quotechar=None):
"""Reads a tab separated value file."""
with open(input_file, "r") as f:
reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
lines = []
for line in reader:
lines.append(line)
return lines
class bertProcessor(DataProcessor): #bert
def __init__(self):
random.seed(42)
self.D = [[], [], []]
for sid in range(3):
with open("class_3_balance_on_A/"+["train.json", "dev.json", "test.json"][sid], "r", encoding="utf8") as f:
data = json.load(f)
if sid == 0:
random.shuffle(data)
for i in range(len(data)):
for j in range(len(data[i][1])):
rid=data[i][1][j]["rid"][0]
# determine hint (try catch for unanswerable)
if data[i][1][j]["r"][0].lower()=="unanswerable":
hint = data[i][1][j]["r"][0].lower()
else:
hint = data[i][1][j]["r"][0].lower()
hint = map_pair[hint]
trigger = data[i][1][j]['t'][0].lower()
id_n = data[i][1][j]["id"]
d = ['\n'.join(data[i][0]).lower(),
data[i][1][j]["x"].lower(),
data[i][1][j]["y"].lower(),
rid,
hint,
id_n,
trigger]
self.D[sid] += [d]
logger.info(str(len(self.D[0])) + "," + str(len(self.D[1])) + "," + str(len(self.D[2])))
def get_train_examples(self, data_dir):
return self._create_examples(
self.D[0], "train")
def get_test_examples(self, data_dir):
return self._create_examples(
self.D[2], "test")
def get_dev_examples(self, data_dir):
return self._create_examples(
self.D[1], "dev")
def get_labels(self):
return [str(x) for x in range(2)]
def _create_examples(self, data, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, d) in enumerate(data):
guid = "%s-%s" % (set_type, i)
text_a = tokenization.convert_to_unicode(data[i][0])
text_b = tokenization.convert_to_unicode(data[i][1])
text_c = tokenization.convert_to_unicode(data[i][2])
text_d = tokenization.convert_to_unicode(data[i][4]) # text_d: relation type eg. per:alternate_names
text_e = tokenization.convert_to_unicode(data[i][6]) # trigger word
# id_n = tokenization.convert_to_unicode(data[i][5])
# examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=data[i][3], text_c=text_c))
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=data[i][3], text_c=text_c, text_d=text_d, id_n=data[i][5], text_e=text_e))
return examples
def tokenize(text, tokenizer):
D = ['[unused1]', '[unused2]']
text_tokens = []
textraw = [text]
for delimiter in D:
ntextraw = []
for i in range(len(textraw)):
t = textraw[i].split(delimiter)
for j in range(len(t)):
ntextraw += [t[j]]
if j != len(t)-1:
ntextraw += [delimiter]
textraw = ntextraw
text = []
for t in textraw:
if t in ['[unused1]', '[unused2]']:
text += [t]
else:
tokens = tokenizer.tokenize(t)
for tok in tokens:
text += [tok]
return text
def convert_examples_to_features(examples, label_list, max_seq_length, tokenizer):
"""Loads a data file into a list of `InputBatch`s."""
print("#examples", len(examples))
features = [[]]
for (ex_index, example) in enumerate(tqdm(examples)):
tokens_a = tokenize(example.text_a, tokenizer)
tokens_b = tokenize(example.text_b, tokenizer)
tokens_c = tokenize(example.text_c, tokenizer)
tokens_d = tokenize(example.text_d, tokenizer)
tokens_e = tokenize(example.text_e, tokenizer)
# _truncate_seq_tuple(tokens_a, tokens_b, tokens_c, max_seq_length - 4) # 4 means for 3 [SEP] and 1 [CLS]
# tokens_b = tokens_b + ["[SEP]"] + tokens_c
_truncate_seq_tuple(tokens_a, tokens_b, tokens_c, tokens_d, max_seq_length - 5)
tokens_b = tokens_b + ["[SEP]"] + tokens_c + ["[SEP]"] + tokens_d
tokens = []
segment_ids = []
tokens.append("[CLS]")
segment_ids.append(0)
for token in tokens_a:
tokens.append(token)
segment_ids.append(0)
tokens.append("[SEP]")
segment_ids.append(0)
# print(len(tokens))
# exit()
for token in tokens_b:
tokens.append(token)
segment_ids.append(1)
tokens.append("[SEP]")
segment_ids.append(1)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to
input_mask = [1] * len(input_ids)
######################################################################################################
# Check d.find > 512
# check tokenizer(d).input_ids == tokenizer.convert_tokens_to_ids(d) ??
# trigger data
t_start = 0
t_end = 1
d = example.text_a # only use for d.find(trigger) because truncate 512
trigger = example.text_e
if len(trigger) > 0:
t_start = d.find(trigger)
t_start = len( tokenizer.convert_tokens_to_ids(tokenize(d[:t_start], tokenizer)) )
trigger_ids = tokenizer.convert_tokens_to_ids(tokenize(trigger, tokenizer))
d_ids = tokenizer.convert_tokens_to_ids(tokens_a)
for k in range(len(d_ids)):
if d_ids[k : k + len(trigger_ids)] == trigger_ids:
# t_start = k # false
t_start = k + 1 # true
break
try:
t_end = t_start + len(tokenizer.tokenize(trigger))
except:
ipdb.set_trace()
# print(d_ids[t_start:t_end])
# exit()
# handle trigger location outside 512 max length constraint
if t_start > len(tokenizer.convert_tokens_to_ids(tokens_a))+1-len(tokenizer.convert_tokens_to_ids(tokenize(trigger, tokenizer))):
t_start = 0
t_end = 1
x_st = len(tokenizer.convert_tokens_to_ids(tokens_a)) + 2 # [CLS] and [SEP]
x_nd = x_st + len(tokenizer.convert_tokens_to_ids(tokenize(example.text_b, tokenizer)))
######################################################################################################
##------------------------------------------------------------------------------------------------
# print("test trigger word")
# tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
# gt_trigs = tokenizer.decode( input_ids[t_start:t_end] )
# print("|{}| |{}|".format(trigger, gt_trigs))
# print(gt_trigs)
# exit()
##------------------------------------------------------------------------------------------------
# Zero-pad up to the sequence length.
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
label_id = example.label
id_n = example.id_n
# if ex_index < 5:
# logger.info("*** Example ***")
# logger.info("guid: %s" % (example.guid))
# logger.info("tokens: %s" % " ".join(
# [tokenization.printable_text(x) for x in tokens]))
# logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
# logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
# logger.info(
# "segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
# [['a'], ['b'], []] : [0][0] [1][0] ...
# [['a], ['b], []] -> [['a], ['b], ['c'], []]
features[-1].append(
InputFeatures(
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
label_id=label_id,
id_n=id_n,
t_idx=[t_start,t_end],
x_idx=[x_st,x_nd]))
if len(features[-1]) == n_class:
features.append([])
if len(features[-1]) == 0:
features = features[:-1]
return features
def _truncate_seq_tuple(tokens_a, tokens_b, tokens_c, tokens_d, max_length):
"""Truncates a sequence tuple in place to the maximum length."""
# This is a simple heuristic which will always truncate the longer sequence
# one token at a time. This makes more sense than truncating an equal percent
# of tokens from each, since if one sequence is very short then each token
# that's truncated likely contains more information than a longer sequence.
while True:
total_length = len(tokens_a) + len(tokens_b) + len(tokens_c) + len(tokens_d)
if total_length <= max_length:
break
if len(tokens_a) >= len(tokens_b) and len(tokens_a) >= len(tokens_c):
tokens_a.pop()
elif len(tokens_b) >= len(tokens_a) and len(tokens_b) >= len(tokens_c):
tokens_b.pop()
else:
tokens_c.pop()
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--data_dir",
default=None,
type=str,
required=True,
help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
parser.add_argument("--bert_config_file",
default=None,
type=str,
required=True,
help="The config json file corresponding to the pre-trained BERT model. \n"
"This specifies the model architecture.")
parser.add_argument("--task_name",
default=None,
type=str,
required=True,
help="The name of the task to train.")
parser.add_argument("--vocab_file",
default=None,
type=str,
required=True,
help="The vocabulary file that the BERT model was trained on.")
parser.add_argument("--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the model checkpoints will be written.")
parser.add_argument("--init_checkpoint",
default=None,
type=str,
help="Initial checkpoint (usually from a pre-trained BERT model).")
parser.add_argument("--do_lower_case",
default=False,
action='store_true',
help="Whether to lower case the input text. True for uncased models, False for cased models.")
parser.add_argument("--max_seq_length",
default=128,
type=int,
help="The maximum total input sequence length after WordPiece tokenization. \n"
"Sequences longer than this will be truncated, and sequences shorter \n"
"than this will be padded.")
parser.add_argument("--do_train",
default=False,
action='store_true',
help="Whether to run training.")
parser.add_argument("--do_eval",
default=False,
action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--train_batch_size",
default=32,
type=int,
help="Total batch size for training.")
parser.add_argument("--eval_batch_size",
default=32,
type=int,
help="Total batch size for eval.")
parser.add_argument("--learning_rate",
default=5e-5,
type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--num_train_epochs",
default=3.0,
type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--warmup_proportion",
default=0.1,
type=float,
help="Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10%% of training.")
parser.add_argument("--save_checkpoints_steps",
default=1000,
type=int,
help="How often to save the model checkpoint.")
parser.add_argument("--no_cuda",
default=False,
action='store_true',
help="Whether not to use CUDA when available")
parser.add_argument("--local_rank",
type=int,
default=-1,
help="local_rank for distributed training on gpus")
parser.add_argument('--seed',
type=int,
default=666,
help="random seed for initialization")
parser.add_argument('--gradient_accumulation_steps',
type=int,
default=2,
help="Number of updates steps to accumualte before performing a backward/update pass.")
parser.add_argument('--optimize_on_cpu',
default=False,
action='store_true',
help="Whether to perform optimization and keep the optimizer averages on CPU")
parser.add_argument('--fp16',
default=False,
action='store_true',
help="Whether to use 16-bit float precision instead of 32-bit")
parser.add_argument('--loss_scale',
type=float, default=128,
help='Loss scaling, positive power of 2 values can improve fp16 convergence.')
parser.add_argument("--resume",
default=False,
action='store_true',
help="Whether to resume the training.")
parser.add_argument("--f1eval",
default=True,
action='store_true',
help="Whether to use f1 for dev evaluation during training.")
args = parser.parse_args()
processors = {"bert": bertProcessor}
#################################### begin ####################################################################
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
n_gpu = torch.cuda.device_count()
else:
device = torch.device("cuda", args.local_rank)
n_gpu = 1
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.distributed.init_process_group(backend='nccl')
if args.fp16:
logger.info("16-bits training currently not supported in distributed training")
args.fp16 = False # (see https://github.com/pytorch/pytorch/pull/13496)
logger.info("device %s n_gpu %d distributed training %r", device, n_gpu, bool(args.local_rank != -1))
if args.gradient_accumulation_steps < 1:
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
args.gradient_accumulation_steps))
args.train_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps)
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
if not args.do_train and not args.do_eval:
raise ValueError("At least one of `do_train` or `do_eval` must be True.")
bert_config = BertConfig.from_json_file(args.bert_config_file)
if args.max_seq_length > bert_config.max_position_embeddings:
raise ValueError(
"Cannot use sequence length {} because the BERT model was only trained up to sequence length {}".format(
args.max_seq_length, bert_config.max_position_embeddings))
if os.path.exists(args.output_dir) and 'model.pt' in os.listdir(args.output_dir):
if args.do_train and not args.resume:
raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
else:
os.makedirs(args.output_dir, exist_ok=True)
task_name = args.task_name.lower()
if task_name not in processors:
raise ValueError("Task not found: %s" % (task_name))
################################# end #######################################################################
processor = processors[task_name]()
label_list = processor.get_labels()
tokenizer = tokenization.FullTokenizer(vocab_file=args.vocab_file, do_lower_case=args.do_lower_case)
train_examples = None
num_train_steps = None
if args.do_train:
train_examples = processor.get_train_examples(args.data_dir)
num_train_steps = int(
len(train_examples) / n_class / args.train_batch_size / args.gradient_accumulation_steps * args.num_train_epochs)
model = BertForSequenceClassification(bert_config, 1)
if args.init_checkpoint is not None:
model.bert.load_state_dict(torch.load(args.init_checkpoint, map_location='cpu'))
if args.fp16:
model.half()
model.to(device)
################################## begin ######################################################################
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
output_device=args.local_rank)
elif n_gpu > 1:
model = torch.nn.DataParallel(model)
if args.fp16:
param_optimizer = [(n, param.clone().detach().to('cpu').float().requires_grad_()) \
for n, param in model.named_parameters()]
elif args.optimize_on_cpu:
param_optimizer = [(n, param.clone().detach().to('cpu').requires_grad_()) \
for n, param in model.named_parameters()]
else:
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'gamma', 'beta']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if n not in no_decay], 'weight_decay_rate': 0.01},
{'params': [p for n, p in param_optimizer if n in no_decay], 'weight_decay_rate': 0.0}
]
optimizer = BERTAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=num_train_steps)
global_step = 0
if args.resume:
model.load_state_dict(torch.load(os.path.join(args.output_dir, "model.pt")))
################################## end ######################################################################
if args.do_train:
train_features = convert_examples_to_features(
train_examples, label_list, args.max_seq_length, tokenizer)
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_examples))
logger.info(" Batch size = %d", args.train_batch_size)
logger.info(" Num steps = %d", num_train_steps)
input_ids = []
input_mask = []
segment_ids = []
label_id = []
id_n = []
t_idx = []
x_idx = []
# trigger_word = []
for f in train_features:
input_ids.append([])
input_mask.append([])
segment_ids.append([])
t_idx.append([])
x_idx.append([])
for i in range(n_class):
input_ids[-1].append(f[i].input_ids)
input_mask[-1].append(f[i].input_mask)
segment_ids[-1].append(f[i].segment_ids)
t_idx[-1].append(f[i].t_idx)
x_idx[-1].append(f[i].x_idx)
# trigger_word.append(f[i].trigger_word)
label_id.append([f[0].label_id])
id_n.append([f[0].id_n])
all_input_ids = torch.tensor(input_ids, dtype=torch.long)
all_input_mask = torch.tensor(input_mask, dtype=torch.long)
all_segment_ids = torch.tensor(segment_ids, dtype=torch.long)
all_label_ids = torch.tensor(label_id, dtype=torch.float)
all_id_ns = torch.tensor(id_n, dtype=torch.long)
all_t_idx = torch.tensor(t_idx, dtype=torch.long)
all_x_idx = torch.tensor(x_idx, dtype=torch.long)
# all_trigger_word = torch
########################################### begin #############################################################
train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids, all_id_ns, all_t_idx, all_x_idx)
if args.local_rank == -1:
train_sampler = RandomSampler(train_data)
else:
train_sampler = DistributedSampler(train_data)
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)
############################################ end ############################################################
for epoch_num in trange(int(args.num_train_epochs), desc="Epoch"):
model.train()
tr_loss = 0
nb_tr_examples, nb_tr_steps = 0, 0
for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
batch = tuple(t.to(device) for t in batch)
# input_ids, input_mask, segment_ids, label_ids, id_ns = batch
input_ids, input_mask, segment_ids, label_ids, id_ns, t_idx, x_idx = batch
# print(input_ids)
# print(x_idx)
# exit()
# loss, _ = model(input_ids, segment_ids, input_mask, label_ids, 1)
# loss, _ = model(input_ids, segment_ids, input_mask, label_ids, 1, torch.tensor([2]).to(device))
loss, _ = model(input_ids, segment_ids, input_mask, label_ids, 1, torch.tensor([2]).to(device), t_idx, x_idx)
############################################# begin ###########################################################
if n_gpu > 1:
loss = loss.mean()
if args.fp16 and args.loss_scale != 1.0:
# rescale loss for fp16 training
# see https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
loss = loss * args.loss_scale
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
loss.backward()
tr_loss += loss.item()
nb_tr_examples += input_ids.size(0)
nb_tr_steps += 1
if (step + 1) % args.gradient_accumulation_steps == 0:
optimizer.step()
model.zero_grad()
global_step += 1
############################################### end #########################################################
torch.save(model.state_dict(), os.path.join(args.output_dir, "model_{}.pt".format(epoch_num)))
continue
if __name__ == "__main__":
main()