-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathfig2.py
302 lines (258 loc) · 11.1 KB
/
fig2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
"""
Copright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu.
"""
import matplotlib.pyplot as plt
from matplotlib import patches
import os
import numpy as np
from fig_utils import *
ccolor = [[0,1,0], [0,0,0.8]]
def panel_neuron_pos(fig, grid, il, yratio, xpos0, ypos0, isort, brain_img):
xpos, ypos = xpos0.copy(), -1*ypos0.copy()
ylim = np.array([ypos.min(), ypos.max()])
xlim = np.array([xpos.min(), xpos.max()])
ylr = np.diff(ylim)[0] / np.diff(xlim)[0]
ax = fig.add_subplot(grid[0,0])
poss = ax.get_position().bounds
ax.set_position([poss[0]+0.01, poss[1]-.04, 1*poss[2],
1*poss[2] / ylr * yratio])
poss = ax.get_position().bounds
memb = np.zeros_like(isort)
memb[isort] = np.arange(0, len(isort))
subsample = 5
ax.scatter(ypos[::subsample], xpos[::subsample], cmap=cmap_emb,
s=0.5, alpha=0.5, c=memb[::subsample], rasterized=True)
ax.axis("off")
add_apml(ax, xpos, ypos)
axin = fig.add_axes([poss[0]-0.02, poss[1] +poss[3]*.8,
poss[2]*0.3, poss[3]*0.3])
axin.imshow(brain_img)
axin.axis("off")
transl = mtransforms.ScaledTranslation(-8 / 72, -0/ 72, fig.dpi_scale_trans)
il = plot_label(ltr, il, axin, transl, fs_title)
return il
def panels_tuning(axs, il, padding, corridor_tuning, label_white=True):
nov = 30
n_corr, nn, npts = corridor_tuning.shape
for icorr in range(n_corr):
ctmax = corridor_tuning[icorr].max()
ctmin = corridor_tuning[icorr].min()
npl = 100
ipl = np.linspace(1, nn-npl//4, npl).astype("int")
for i in ipl:
ct = corridor_tuning[icorr, i].copy()
ct -= ctmin
ct /= ctmax
axs[icorr].plot(np.arange(0, npts), i - ct*nov + nov/2, #(n_sn-i-24)+ct*nov,
color=ccolor[icorr], lw=0.5)
axs[icorr].plot((npts*2/3) * np.ones(2), [0, nn*(1+padding)],
color='k', lw=1, zorder=5)
if label_white:
axs[icorr].text(2/3 + 0.02, 0.02, 'white space start',
transform=axs[icorr].transAxes, va='bottom', rotation=90)
if icorr==0:
axs[icorr].set_title("tuning curves")
#text(0, 1, 'tuning curves', ha='left',
# transform=axs[icorr].transAxes, fontsize="large")
axs[icorr].text(1.1, -0.05, "position (cm)", ha="center", va="top",
transform=axs[icorr].transAxes)
transl = mtransforms.ScaledTranslation(-15 / 72, 5/ 72, axs[icorr].figure.dpi_scale_trans)
il = plot_label(ltr, il, axs[icorr], transl, fs_title)
axs[icorr].set_xlim([0, npts])
axs[icorr].set_ylim([0, nn*(1+padding)])
axs[icorr].invert_yaxis()
axs[icorr].spines["left"].set_visible(False)
axs[icorr].set_yticks([])
axs[icorr].set_xticks([0, 2/3*100])
axs[icorr].set_xticklabels(["0", "40"])
return il
def panel_raster(fig, ax, il, padding, sn, xmin, xmax,
corridor_starts, corridor_widths, reward_inds,
cmap_neurons=True,
title_str="neural activity in virtual reality"):
poss = ax.get_position().bounds
cax = fig.add_axes([poss[0]-0.035, poss[1]+poss[3]-0.12*poss[3],
poss[3]*0.005, 0.1*poss[3]])
plot_raster(ax, sn, xmin=xmin, xmax=xmax,
vmax=2, fs=3.38, n_neurons=5000, nper=100, label=True,
padding=padding, cax=cax, cax_label="left",
cax_orientation="vertical", label_pos="right")
#plt.colorbar(im, cax, orientation="horizontal")
#cax.set_xlabel("z-scored\n ")
ax.set_title(title_str)
transl = mtransforms.ScaledTranslation(-15 / 72, 5/ 72, fig.dpi_scale_trans)
il = plot_label(ltr, il, ax, transl, fs_title)
nn = sn.shape[0]
if cmap_neurons:
cax = fig.add_axes([poss[0]-poss[2]*0.02, poss[1], poss[2]*0.01, poss[3]])
cols = cmap_emb(np.linspace(0, 1, nn))
cax.imshow(cols[:,np.newaxis], aspect="auto")
cax.set_ylim([0, (1+padding)*nn])
cax.invert_yaxis()
cax.axis("off")
# add corridor colors
for n in range(len(corridor_starts)):
if (corridor_starts[n,0]+corridor_widths[n] > xmin and
corridor_starts[n,0] < xmax):
icorr = int(corridor_starts[n,1])
start = corridor_starts[n,0]
width = corridor_widths[n]
width += min(0, start-xmin)
start = max(0, start - xmin)
width = min(width, xmax - xmin - start)
ax.add_patch(
patches.Rectangle(xy=(start, 0), width=width,
height=nn, facecolor=ccolor[icorr],
edgecolor=None, alpha=0.1))
# add reward events
for n in range(len(reward_inds)):
if reward_inds[n] > xmin and reward_inds[n] < xmax:
start = int(reward_inds[n] - xmin)
width = 0
ax.add_patch(patches.Rectangle(xy=(start, 0), width=width,
height=nn, facecolor=None, edgecolor='g', alpha=1))
return il
def panel_events(ax, xmin, xmax, sound_inds, lick_inds, reward_inds):
h1=ax.scatter(sound_inds-0.5,0*np.ones([len(sound_inds),]),
color=[1.,0.6,0], marker='s', s=30)
h2=ax.scatter(lick_inds-0.5,-1*np.ones([len(lick_inds),]),
color=[1.0,0.3,0.3], marker='.', s=30)
h0=ax.scatter(reward_inds-0.5,1*np.ones([len(reward_inds),]),
color='g', marker='^', s=30)
ax.axis('off')
ax.set_xlim([xmin, xmax])
ax.set_ylim([-1.35, 1.35])
ax.legend([h0,h1,h2], ["reward", "tone", "licks"],
handletextpad=0.01, labelspacing=0.15, loc=(-0.08,-0.31),
labelcolor="linecolor", frameon=False)
def panel_imgs(grid, il, corridor_imgs):
Ly, Lx = corridor_imgs.shape[1:]
Lyc = Lx*4
xp = int(Lx*0.4)
imgs = 255*np.ones((Lx*2+xp*2, Lyc), "uint8")
for k in range(2):
imgs[(Lx+xp)*k+xp : (Lx+xp)*k+xp + Lx] = corridor_imgs[k, :Lyc].T
imgs = np.tile(imgs[:,:,np.newaxis], (1,1,3))
ax = plt.subplot(grid[1,0])
ax.imshow(imgs)
for k in range(2):
ax.text(0, (Lx+xp)*k + xp-10, "leaves" if k==0 else "circles",
color=ccolor[k])
ax.axis("off")
ax.set_title("VR corridors")
transl = mtransforms.ScaledTranslation(-15 / 72, 5/ 72, grid.figure.dpi_scale_trans)
il = plot_label(ltr, il, ax, transl, fs_title)
return il
def panel_cc(grid, il, yratio, cc_nodes):
ax = plt.subplot(grid[-1, 0])
poss = ax.get_position().bounds
ax.set_position([poss[0], poss[1]-.0, 0.95*poss[2],
0.95*poss[2] * yratio])
poss = ax.get_position().bounds
vmax = 1
im = ax.imshow(cc_nodes, vmin=-vmax, vmax=vmax, cmap="RdBu_r")
ax.axis("off")
ax.set_title("asymmetric similarity")
transl = mtransforms.ScaledTranslation(-15 / 72, 5/ 72, grid.figure.dpi_scale_trans)
il = plot_label(ltr, il, ax, transl, fs_title)
cax = grid.figure.add_axes([poss[0]+poss[2]*1.02, poss[1]+poss[3]*0.75,
poss[2]*0.03, poss[3]*0.25])
plt.colorbar(im, cax)
return il
def _fig2(brain_img, sn, xpos, ypos, isort, isort2, cc_nodes,
corridor_starts, corridor_widths,
corridor_tuning, corridor_imgs, VRpos,
reward_inds, sound_inds, lick_inds, run):
fig = plt.figure(figsize=(14,7))
yratio = 14 / 7
grid = plt.GridSpec(3,5, figure=fig, left=0.02, right=0.98, top=0.98, bottom=0.02,
wspace = 0.3, hspace = 0.15)
il = 0
il = panel_neuron_pos(fig, grid, il, yratio, xpos, ypos, isort, brain_img)
il = panel_imgs(grid, il, corridor_imgs)
il = panel_cc(grid, il, yratio, cc_nodes)
ax = plt.subplot(grid[:,1:])
pos = ax.get_position().bounds
ax.remove()
xmin = 0
xmax=xmin+520
nn = sn.shape[0]
xr = xmax - xmin
y0 = pos[1]
x0 = pos[0]
padding=0.025
dye = 0.06
dyr = 0.09
dx = 0.8
xpad = 0.03*pos[2]
xpadt = 0.01*pos[2]
dxt = ((1-dx)*pos[2]-xpad-xpadt)/2
ypad = 0.02*pos[3]
ys = y0+(dye+dyr)*pos[3]+ypad+0.01*pos[3]
poss = [x0, ys, pos[2]*dx, pos[3]-ys]
ax = fig.add_axes(poss)
il = panel_raster(fig, ax, il, padding, sn, xmin, xmax,
corridor_starts, corridor_widths, reward_inds)
ax = fig.add_axes([poss[0], y0+dyr*pos[3]+ypad, poss[2], dye*pos[3]])
panel_events(ax, xmin, xmax, sound_inds, lick_inds, reward_inds)
ax = fig.add_axes([poss[0], y0, poss[2], dyr*pos[3]])
ax.fill_between(np.arange(0, xr), run[xmin:xmax], color=kp_colors[0])
ax.set_xlim([0, xr])
ax.set_ylim([0, np.percentile(run[xmin:xmax], 99)])
ax.axis("off")
ax.text(0.11,0.9,"running speed", transform=ax.transAxes, color=kp_colors[0])
axs = [fig.add_axes([poss[0]+poss[2]+xpad, poss[1], dxt, poss[3]]),
fig.add_axes([poss[0]+poss[2]+xpad+xpadt+dxt, poss[1], dxt, poss[3]])]
il = panels_tuning(axs, il, padding, corridor_tuning)
return fig
def fig2(root, save_figure=True):
d = np.load(os.path.join(root, "results", "corridor_proc.npz"), allow_pickle=True)
d2 = np.load(os.path.join(root, "data", "corridor_behavior.npz"), allow_pickle=True)
try:
brain_img = plt.imread(os.path.join(root, "figures", "brain_window_visual.png"))
except:
brain_img = np.zeros((50,50))
fig = _fig2(brain_img, **d, **d2)
if save_figure:
fig.savefig(os.path.join(root, "figures", "fig2.pdf"), dpi=200)
def _suppfig_vr_algs(snys, ctunings,
corridor_starts, corridor_widths, reward_inds):
fig = plt.figure(figsize=(12,12))
grid = plt.GridSpec(2,1, figure=fig, left=0.06, right=0.96, top=0.96, bottom=0.04,
wspace = 0.3, hspace = 0.15)
xmin = 1000
xmax=xmin+500
il = 0
padding = 0.025
alg = ["t-SNE", "UMAP"]
for k in range(2):
sny = snys[k]
ctuning = ctunings[k]
ax = plt.subplot(grid[k])
pos = ax.get_position().bounds
ax.remove()
xmin = 1000
xmax=xmin+500
nn = sny.shape[0]
xr = xmax - xmin
y0 = pos[1]
x0 = pos[0]
padding=0.025
dx = 0.8
xpad = 0.03*pos[2]
xpadt = 0.01*pos[2]
dxt = ((1-dx)*pos[2]-xpad-xpadt)/2
poss = [x0, y0, pos[2]*dx, pos[3]]
ax = fig.add_axes(poss)
il = panel_raster(fig, ax, il, padding, sny, xmin, xmax,
corridor_starts, corridor_widths, reward_inds,
cmap_neurons=False, title_str=f"{alg[k]} sorting")
axs = [fig.add_axes([poss[0]+poss[2]+xpad, poss[1], dxt, poss[3]]),
fig.add_axes([poss[0]+poss[2]+xpad+xpadt+dxt, poss[1], dxt, poss[3]])]
il = panels_tuning(axs, il, padding, ctuning, label_white=False)
return fig
def suppfig_vr_algs(root, save_figure=True):
d = np.load(os.path.join(root, "results", "corridor_supp.npz"), allow_pickle=True)
fig = _suppfig_vr_algs(**d);
if save_figure:
fig.savefig(os.path.join(root, "figures", "suppfig_vr_algs.pdf"))