-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdenoising_autoencoder.py
172 lines (140 loc) · 5.13 KB
/
denoising_autoencoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import os
import random
from argparse import ArgumentParser
import numpy as np
import pytorch_lightning as pl
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from pytorch_lightning import Trainer
from pytorch_lightning.loggers import TensorBoardLogger
from data_helper import AddGaussianNoise, CorruptedUnlabeledDataset
random.seed(0)
np.random.seed(0)
torch.manual_seed(0)
IMAGE_FOLDER = "../data"
class DenoisingAutoencoder(pl.LightningModule):
"""A denoising autoencoder module
The trained autoencoder is later used as a feature extractor for the
labeled data.
Parameters
----------
hparams : argparse.Namespace
A namespace containing the required hyperparameters. In particular, the
code expects `hparams` to have the following keys:
1. BATCH_SIZE
2. LEARNING_RATE
3. L2_PENALTY
4. EPOCHS
"""
def __init__(self, hparams):
super(DenoisingAutoencoder, self).__init__()
self.hparams = hparams
self.encoder = nn.Sequential(
nn.Conv2d(3, 256, 3, 2),
nn.LeakyReLU(),
nn.Conv2d(256, 128, 3, 2),
nn.LeakyReLU(),
nn.Conv2d(128, 64, 3, 2),
nn.LeakyReLU(),
nn.Conv2d(64, 32, 3, 2),
nn.LeakyReLU(),
) # Output size -> (None, 32, 13, 13)
self.decoder = nn.Sequential(
nn.ConvTranspose2d(32, 64, 3, 2),
nn.LeakyReLU(),
nn.ConvTranspose2d(64, 128, 3, 2),
nn.LeakyReLU(),
nn.ConvTranspose2d(128, 256, 3, 2),
nn.LeakyReLU(),
nn.ConvTranspose2d(256, 3, 3, 2, output_padding=1),
nn.Tanh(),
) # Output size -> (None, 3, 224, 224)
def forward(self, x):
features = self.encoder(x)
return features
def training_step(self, batch, batch_idx):
input_, target_ = batch
features = self.forward(input_)
reconstruction = self.decoder(features)
loss = F.mse_loss(reconstruction, target_)
logs = {"loss": loss}
return {"loss": loss, "log": logs}
def validation_step(self, batch, batch_idx):
input_, target_ = batch
reconstruction = self.decoder(self.forward(input_))
loss = F.mse_loss(reconstruction, target_)
return {"val_loss": loss}
def validation_epoch_end(self, outputs):
val_loss_mean = torch.stack([x["val_loss"] for x in outputs]).mean()
logs = {"val_loss": val_loss_mean}
return {"val_loss": val_loss_mean, "log": logs}
def configure_optimizers(self):
return torch.optim.Adam(
self.parameters(),
lr=self.hparams.LEARNING_RATE,
weight_decay=self.hparams.L2_PENALTY,
)
def prepare_data(self):
# The first 106 scenes are unlabeled
unlabeled_scene_index = np.arange(106)
# Keeping aside 6 scenes for validation
# np.random.shuffle(unlabeled_scene_index)
self._train_unlabeled_scene_index = unlabeled_scene_index[:100]
self._valid_unlabeled_scene_index = unlabeled_scene_index[100:]
self._static_transform = torchvision.transforms.Compose(
[
torchvision.transforms.Resize((224, 224)),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(
(0.54, 0.60, 0.63), (0.34, 0.34, 0.34)
),
]
)
self._noise = AddGaussianNoise(mean=0.0, std=0.25)
self.unlabeled_trainset = CorruptedUnlabeledDataset(
image_folder=IMAGE_FOLDER,
scene_index=self._train_unlabeled_scene_index,
transform=self._static_transform,
noise=self._noise,
)
self.unlabeled_validset = CorruptedUnlabeledDataset(
image_folder=IMAGE_FOLDER,
scene_index=self._valid_unlabeled_scene_index,
transform=self._static_transform,
noise=self._noise,
)
def train_dataloader(self):
return torch.utils.data.DataLoader(
self.unlabeled_trainset,
batch_size=self.hparams.BATCH_SIZE,
shuffle=True,
num_workers=4,
)
def val_dataloader(self):
return torch.utils.data.DataLoader(
self.unlabeled_validset,
batch_size=self.hparams.BATCH_SIZE,
shuffle=False,
num_workers=4,
)
def main(args):
logger = TensorBoardLogger(
save_dir=os.getcwd(),
version=None, # To prevent from using the slurm job id
name="lightning_logs",
)
model = DenoisingAutoencoder(hparams=args)
trainer = Trainer(gpus=1, max_epochs=args.EPOCHS, logger=logger)
trainer.fit(model)
if __name__ == "__main__":
parser = ArgumentParser()
# parametrize the network
parser.add_argument("--BATCH_SIZE", type=int, default=128)
parser.add_argument("--EPOCHS", type=int, default=50)
parser.add_argument("--LEARNING_RATE", type=float, default=1e-3)
parser.add_argument("--L2_PENALTY", type=float, default=1e-5)
args = parser.parse_args()
# train
main(args)