diff --git a/assets/css/main.css b/assets/css/main.css index bfd448e..eec6f7d 100644 --- a/assets/css/main.css +++ b/assets/css/main.css @@ -277,7 +277,7 @@ d-article d-contents nav ul { padding-left: 1em; margin-top: 0; margin-bottom: 6 d-article d-contents nav ul li { margin-bottom: 0.25em; } -d-article d-contents .figcaption { line-height: 1.4em; } +d-article d-contents .figcaption { line-height: 1.4em; font-size: 0.8em;} d-article d-contents toc-line { border-right: 1px solid var(--global-divider-color); grid-column: toc-line; } diff --git a/index.html b/index.html index e5a24dd..769b7bd 100644 --- a/index.html +++ b/index.html @@ -174,6 +174,7 @@
NJU Vision Lab

TLDR

+

This paper proposes a novel ρ-Vision to directly perform high-level semantic understanding and low-level compression using RAW images. The framework is demonstrated to provide better detection accuracy and compression than RGB-domain counterparts and is shown to be able to generalize across different camera sensors and task-specific models. Additionally, it has the potential to reduce ISP computation and processing time.

@@ -204,6 +205,8 @@

Overview

Results

+
RAW-Domain Detection
+
zero-shot RAW detection results @@ -222,6 +225,8 @@

Results

+
RAW-Domain Segmentation
+
zero-shot RAW segmentation results