The Monin-Obukhov Module for FMS

1 The Similarity Theory

Monin-Obukhov similarity (MOS) theory is the standard method for com-
puting surface fluxes from the lowest level winds, temperatures, and tracer
mixing ratios in GCMs. The lowest level is assumed to lie within the ”sur-
face layer” in which turbulent fluxes have negligible vertical variation, and
in which MOS assumes that the wind and buoyancy profiles are a function
only of the surface stress, the surface buoyancy flux, and the height z. A
good reference is

Garratt, J. R. ”The Atmospheric Boundary Layer”, Cambridge
University Press, 1992

1.1 Scales

The surface stress provides a velocity scale, u,, defined so that the magnitude
of the surface stress 7 is given by

T = Psui (1)

where p; is the surface air density. The upward surface buoyancy flux B can
then be used to define a buoyancy scale, b,

B = psu,b, (2)

In the atmosphere, if one ignores the virtual temperature effect, the buoyancy
can be taken to be

(©—6y)

b=

(3)



where © is the potential temperature and ©g is a constant reference value,
which can be chosen equal to the surface value. For a hydrostatic atmosphere,
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so, instead of potential temperature, one can equally well use the dry static
energy divided by ¢,: T+ gz/c,. To include virtual temperature effects, one
replaces T or © by the virtual temperature or virtual potential temperature.
The effects of the humidity difference between the surface and the lowest
model level can be as large as the temperature difference over the tropical
oceans, when computing buoyancy gradients.

This scaling for the buoyancy is inappropriate in the ”free-convective limit”
in which stress, or u,, vanishes but there is still a non-zero buoyancy flux.
We return to the question of the free-convective limit of MOS theory below.

The units of buoyancy are [meters]/[sec]?, so one can create a length scale
from u, and b,,

L = —u}/(rb.) (5)

The inclusion of x = von Karman’s constant is conventional. L is referred
to as the Monin-Obukhov length. With this sign convention, L is positive
under stable conditions, in which B < 0 (heat flux into the surface). Roughly
speaking, for z < |L| the turbulence is primarily driven mechanically and for
z > |L| it is primarily driven by buoyancy. Mechanically driven turbulence
always wins out close enough to the surface, as long as the stress is non-zero.

1.2 The neutral case

In the neutral case, b, = 0, and the wind shear is assumed be a function only
of the stress, u, and the height above the surface z.

du u
=l ()
0z  kz
This equation can be thought of as defining «, which is assumed to be a uni-
versal constant. From laboratory experiments and atmospheric observations,



the value of k is about 0.4. Integrating, we obtain the famous logarithmic

”law of the wall”: .

Uy
u(z) = “in(2) (7
where u is the wind component in the direction of the surface stress, and
zo is the "roughness height” | defined as the height at which the logarithmic
profile would yield zero wind. (The turning of the wind is assumed to be neg-
ligible within this surface layer.) The roughness height is the key parameter

describing the macroscopic effects of the surface type on the stress.

The ”neutral drag coefficient” | given the flow at height z, C,(z), is defined
so that, in the neutral case, the surface stress vector is given by

T = pCplv|v (8)
7] _ 2 2
P Cn(2)|v(2)] (9)
so that .
Cn(z) = [m]Q (10)

The neutral drag coefficient is a function of the height at which the winds
are supplied. Given the roughness height and the height z of the specified
wind, we have simple expressions for the drag coefficient and surface stress.
(Quite often in meteorology, the term ”surface winds” refers to the winds at
a height of 10 m, and drag coefficients are quoted with the assumption that
they refer to winds at this height.)

1.3 Stratification

In the stratified case, the key assumption in MOS is that the profile can also
depend on ¢ = z/L. It is conventional to write

— = =0,(¢) (11)

where ®,, is presumed to be a universal function of (. ®,, —» 1 as ( —
0, so that the logarithmic profile is achieved as the surface is approached.
Integrating from zy to z, we find

U

u(2) = —(Fu(2/L) = Fu(20/L)) (12)



where

Fu(Q) = [ ¢ 0ndc (13)

The assumption is that zy is not a function of stability, which is plausible as
long as zp << |L|.

The problem now becomes that of generating the simultaneous surface fluxes
of buoyancy and momentum from the values of v and b at some height z;
the determination of the wind profile is coupled to that of determining the
buoyancy profile.

Therefore, by the same scaling argument, one writes the buoyancy profile as,

Kz Ob
bos @, (C) (14)
Integrating as before,
b(2) — b0) = =(Fy(2/L) ~ Fil(/1) (15)

where z, is the roughness length for bouyancy, defined so that b would take
on its surface value at z,. In the neutral limit, both F}, and F} should equal

in(C).

In general, there is no reason to expect zy and z, to be the same. Typically
2o > 23 because momentum can be transferred to the surface through pressure
forces as well as molecular viscosity, whereas temperature and humidity must
be transferred by molecular diffusion at the surface (except when there is sea
spray etc) One sometimes uses the notation

n = In(zy/2) (16)

For example, Garratt suggests that n ~ 2 over typical land surfaces.

2 Solving For Surface Fluxes

Given the form of the stability functions F,, and F}, one can obtain a con-
sistency condition by computing L



u(2)*(Fy(C) — Fy(Czp/2))
(b(2) = b(0))(Fin(C) — Frn(C20/2))?
Fy(¢) — Fy(Ca/2)
(Fin(C) = Fin(C20/2))?

where R is the "Bulk Richardson number” between the surface and the

height 2
= 200G —b0) _ g2(0,() — €,(0) )

L= —u?/(kb,) =

*

(17)

or

Ry =¢

(18)

ou(@)? 0,(0)u(2)?
Eq (18) can then be solved iteratively for (, given Ry, zy/z, and z,/z.

Given (, one can then compute
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These values correspond to the drag coefficients
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and )
Cy = = (23)

(Fm(C) = Fn(C20/2)) (Fb(C) — Fo(C2/2))

In implementing this theory, once one has chosen similarity functions, one
has a choice of iterating to a solution whenever it is needed, or of tabulating
the solution for the relevant range of inputs, and, potentially, fitting the
results with easly evaluated functions. Given that there are three inputs, the
typical (but not universal) choice is to iterate. If there were only two inputs
- i.e., if one could assume that the ratio of 2, to z;, were fixed, tabulation and
curve fitting would be more straighforward. In FMS, the solution is obtained
by iteration.



For the purpose of iteration using Newton-Raphson, we note that the needed
derivative is

o (L P(Q) = Pu(C20/2)  Pm(C) — Pm(C20/2)
ORy/0¢ = Ry <<+ Q) —Folca/2) 2Fm(<)—Fm(<zb/z)> (24)

3 The Stability Functions

Ideally there would be a generally accepted theory for the stability functions,
but no such theory exists, and they are evaluated from atmospheric field
studies. The forms that receive the most support, and that are recommended
by Garratt, are for the unstable case ¢ < 0,

®,, = (1-16¢)""* (25)

&, = (1 16¢) (26)
and in the stable case ¢ > 0,

O, =D, =145 (27)

These are considered to have empirical support in the range —5 < ( < 1.

3.1 The unstable case

Consider the limit that the mean wind, and therefore, the surface stress and
the friction velocity u, tend to zero. With the choice of stability functions
presented above, the result will be zero buoyancy flux as well. This will be

true as long as ®, — 0 more rapidly than ¢~'/3 as |¢| = oo.
To see why ®, oc |¢|7/? is special, look at the buoyancy profile and ask under
what conditions it approaches a well-defined limit as u, — 0. We can rewrite

(14) as
o B By(C) = B (I)b<—/fzb*>: B q)b<—/<azB> (28)

0z KU,z KUy 2 u? KUy u?




where B is here the buoyancy flux divided by the surface density. In order for

this profile to be well-defined as u, — 0 and { — —oo, we need ®;, o< |¢|71/3
so that the factors of u, cancel, leading to

ob B3

& X —24/3 (29)

which is referred to as the free-convection limit.

With the recommended stability function (26) we have instead ®, oc |¢|7!/2
for large |C|. To see that this results in zero buoyancy flux in the free con-
vective limit, we note that in the large || limit we have

K2AD|v|
Fn(Q)F(C)

where Ab is the buoyancy difference between the surface and level z and ( is
determined by

B= (30)

_2Ab  (F(C)
B =T = B 3y
Eliminating F},, we have X
> 2(Ab)
X R )

If &, oc |¢|7'/2 for large |¢| then we also have Fy o< |¢|7'/2. So B — 0 as

This is unsatisfactory — either one must use a stability function that is con-
sistent with the free-convective limit, or one must not allow the wind speed
that is used in the similarity theory to approach 0. The latter alternative
is the choice made in our model and in many others. The picture is that in
the convective limit, eddies transporting buoyancy across level z have length
scales that scale not with z but with the depth of the convective layer h,
which violates the assumptions of the original similarity theory. These ed-
dies produce wind speed perturbations (”gusts”) of magnitude

G = (Bh)'/? (33)

which is the only velocity scale that one can generate from B and h. One
can now visualize using the similarity theory on smaller scales than these



gusts, implying that the gusts must be included in the wind speed that is
input into MOS. From the viewpoint of the MOS module itself, it need not
be concerned with the free-convective limit — it assumes that the input wind
speed will be bounded away from zero by some theory of ” gustiness”.

The stability functions (25) and (26) have the property that ®2, = ®;,. This
implies that the local (as opposed to the bulk) Richardson’s number is equal
to (, and, in particular, that Rz is a linear function of z. If there were some
dynamical argument for this simple structure, it would help in justifying this
choice of stability functions, but we are not aware of such an argument.

These forms have the convenient property that we can evaluate the integral
stability functions, F,, and Fj, analytically. One finds, with considerable
effort, that (using the notation F((;(y) = F(¢) — F((o) where (y = 2/L =

Cz0/%)
Fn(C ) = ln(i)_an( 1+ )—ln(l +x

20 1+ 1+ I%)+2(taﬂfl(I)—tan*1(Io)) (34)

where 2 = (1 — 16¢)"/*; while for buoyancy

AGG) = n(5) =22

) (35)
where y = (1 — 16¢)'/2.

These expressions are sufficiently costly to compute, especially F,,,, that there
might be value in using a table look up for them, even as part of the overall
iteration. At present, they are simply computed directly from these expres-
sions within FMS.

3.2 The stable case

It is not difficult to show that with &, = ®,,,, and, therefore, F;, = F},, on the
stable side that the drag coefficients drop to zero close to Ri, < 0.2, given
the form (27). This critical Richarsons’s number would be exactly 0.2 if one
set z9 = zp,. To see this, note that, with (27) we have F, = F,,, = In({) + ¢
with 8 =5, so that ¢

~ In(z/z) + BC — G)
8

Ry

(36)



As ( increases, this in bounded above by R = 3~'. Therefore, as R,
approaches R..;;, ¢ — 0o, and, therefore, F,,, F; — oo as well., implying that
the drag coefficients — 0

While 0.2 is close to the 0.25 stability criterion for linear Kelvin Helmholtz
instability, it is inconsistent with field data to set the fluxes to zero at this low
a bulk Richardson’s number. Intermittent turbulence still exists at higher
stability, associated with breaking gravity waves likely related to inhomo-
geneities in the surface whose effects are not representable in terms of a
surface roughness.

Since the value 8 = 5 seems to agree with data in the moderately stable
range, one generally modifies &, and ®,, so that they have this form for
small ¢ but allow non-zero fluxes for larger Ri,. Different model use various
forms for this purpose. The simplest would seem to be the most desirable. It
is also very convenient to have a form that allows one to integrate ®,,(()/C
analytically so that one has a relatively simple expression for F},,. The MOS
module has two options:

Version 1 is

5+ B¢
1+¢

This approaches 1 + 3¢ for large ¢ while preserving the observed small ¢
behavior. One can use [ as a tunable parameter to modify the poorly un-
derstood surface mixing in very stable conditions. In the code, the namelist
parameter is rich_crit = 1/

P, =0y =1+ (37)

Version 2, which we now favor, in that it provides additional controls on the
mixing, is piecewise linear

B, =B =145 C<Cr (38)

=0, =1+ (- 0)C+0¢ ¢=Cr (39)

Here 3 controls the critical Ri as before, while (7 controls the point at which
a transition is made from the established stability function for the fully tubu-
lent boundary layer to the presumably intermitent turbulence at high stabil-
ity. With this version one can generate drag coefficients that are small but
non-zero for a large range of Ri (see the following section). In the namelist,
(r is denoted by zeta_trans.



The integrals of ®(()/( can once again be computed analytically.

4 Diffusion coefficients

The profiles of wind and buoyancy obtained in this way can be thought
of as determining diffusivities that would result in these profiles if vertical
diffusion were the only process acting — which the surface flux similarity
theory effectively assumes in any case. To obtain this equivalent diffusivity,
one can equate the surface flux with the diffusivity multiplied by the gradient.
In particular, the kinematic diffusivity for momentum K, is then

u? KUy 2

K = 50 = T2/ (40)

The diffusivity for buoyancy (ie potential temperature or dry static energy)

is
U by KUy 2

T 0.0 ®y(z/L)
corresponding to a Prandtl ratio, Pr = K,/ K, = ®,/®,,.

Ky

(41)

If one’s GCM has sufficient vertical resolution to penetrate this surface layer,
and assuming that the GCM is diffusing in the vertical, then its diffusivity
and viscosity should approach these values as the surface is approached.

In the stable planetary boundary layer above the surface layer, the diffusivity
in GCMs is often modeled as being local in the vertical, of the form

ou
K = 0?|— 42
5] (42)

where 7 is a mixing length. In the neutral surface layer, we have

u? ou
mn b |Ou/0z| (12) |8z| (43)

so in this limit, / = kz. In the stratified case, we write

( = kzf(Ri)Y? (44)
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so that 5
K = (k2)’| 5| F(Ri) (45)

In terms of our stability function ®, assumed to be the same for momentum
and buoyancy, we have for the stratified case

(kz)%, Ou
K, =K,= — 4
b d? |8z (46)
Therefore, we can set
J(Ri) = (2(¢))~* (47)
where, we recall, the relationship between R: and ( is
: RS

given the assumed equality of ®,, and ®,. Solving this last expression for ¢
as a function of Ri, one can substitute into (47) to obtain f as a function of
Ri.

If one simply used ® = 1 + 3¢ one would find that
J(Ri) = (1 - BRi)? (49)

The analogous expression for version 1 involves the positive solution of the
quadratic

(Ri™' =)+ (Ri™'+6)( —1=0 (50)
One can then set K = ® 2, where ® is given by (37).

For version 2 one simply gets

f(Ri) = (1 —5Ri)* Ri< Rir (51)
and o,
F(Ri) = (%) . Ri> Riy (52)
where . Cr
Rir =17 5(r (53)
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Figure 1: f(Ri) as a function of Ri. The notation is v1(z) — version 1 with
x = Rigy =1/, v2(x,y) — version 2 with o = (r and y = Rigy

One can see from the figure that version 2 allows one to match the empiri-
cally observed stability function for weakly stable conditions while still being
able to tune the mixing at large stability, for which there is little empirical
guidance and for which MOS is presumably invalid in any case. In version
1, if one tries to increase the mixing at high stabilities one begins to depart
substantially from the empirical relation at weak stability.

In addition to providing a way of matching an interior diffusivity of the
form (45), these expressions also provide a useful way of thinking about the
strength of the mixing in the surface layer implied by the similarity profiles.

5 Implementation Notes

Four interfaces are provided (see FMS documentation for details)

e mo_drag returns drag coefficients for momentum, heat, and specific
humidity using as input the height z, the effective wind speed at z
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(incorporating gustiness), and the virtual potential temperature at z
and at the surface. In addition to the three drag coefficients, output
also includes u, and b,

e mo_profile returns the profiles of momentum, heat, and specific hu-
midity below height z, given the three roughness lengths as well as ux,
bx, and ¢*. (while u, and b, are available as output from mo_drag, ¢.
must be computed by dividing the evaporation by wu.)

e mo_diff returns the diffusivities consistent with the similarity profiles,
as described by Eqs. (40) and (41), given u, and b,

e stable_mix returns the function f(Ri) described by Eq. (45)

The relevance of this theory to boundary layer fluxes is typically limited to
~ 10% of the planetary boundary layer depth (PBL). This number seem to
arise from the fact that O(1) wind turning and stress changes occur on the
scale of the PBL, so these are likely to be O(1/10) over ther lowest 10 percent
of the PBL.) This provides strong motivation to place the lowest model level
close to the surface, preferably less than 50 meters.

The assumption is that the differential stability functions for tracers, such as
specific humidity, are the same as those for buoyancy, or potential tempera-
ture. However, the roughness length for tracers can be different from that for
buoyancy or momentum, so that the final profiles, and drag coeffcients, can
be different. The monin-obukhov length L and the drag coeffcients for mo-
mentum and buoyancy (heat) are functions of the momentum and buoyancy
roughness lengths. The The drag coefficient for tracers is then a function of
L and the roughness length for tracer.

The convergence criterion is that the change in  from the previous iteration
d¢, satisfies min(|0C|,|6¢C/¢|) < 1.e — 04

Convergence of the interation can be slow when Ry is close to R.,;. To avoid
this, Ri, is arbitrarily set to Ri..;; whenever Ri > 0.95R..;

The value of von_Karman’s constant is taken from constants_mod, as is the
value of g, required to compute buoyancy from the potential temperatures
input into mo_drag.
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