-
Notifications
You must be signed in to change notification settings - Fork 2.6k
/
Copy pathqwen2_500m.py
228 lines (202 loc) · 8.64 KB
/
qwen2_500m.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional
import lightning.pytorch as pl
import nemo_run as run
import torch
from nemo.collections.llm.api import finetune, pretrain
from nemo.collections.llm.gpt.data.mock import MockDataModule
from nemo.collections.llm.peft import PEFT_STR2CLS
from nemo.collections.llm.recipes.finetune_default import default_finetune_recipe
from nemo.collections.llm.recipes.log.default import default_log, default_resume, tensorboard_logger
from nemo.collections.llm.recipes.optim.adam import distributed_fused_adam_with_cosine_annealing
from nemo.collections.llm.recipes.qwen2 import qwen2_model, qwen2_trainer
from nemo.utils.exp_manager import TimingCallback
NAME = "qwen2_500m"
@run.cli.factory(name=NAME)
def model() -> run.Config[pl.LightningModule]:
"""
Factory function to create a Qwen2 500m model configuration.
Returns:
run.Config[pl.LightningModule]: Configuration for the Qwen2 500m model.
Examples:
CLI usage:
$ nemo llm pretrain model=qwen2_500m ...
Python API usage:
>>> model_config = model()
>>> print(model_config)
"""
return qwen2_model(version=NAME)
@run.cli.factory(target=pretrain, name=NAME)
def pretrain_recipe(
# General
dir: Optional[str] = None,
name: str = "default",
# Trainer
tensor_parallelism: int = 1,
pipeline_parallelism: int = 1,
pipeline_parallelism_type: Optional[torch.dtype] = None,
virtual_pipeline_parallelism: Optional[int] = None,
context_parallelism: int = 1,
sequence_parallelism: bool = False,
num_nodes: int = 1,
num_gpus_per_node: int = 8,
max_steps: int = 300000,
precision: str = "bf16-mixed",
accumulate_grad_batches: int = 1,
gradient_clip_val: float = 1.0,
limit_test_batches: int = 32,
limit_val_batches: int = 32,
log_every_n_steps: int = 10,
val_check_interval: int = 500,
# Data
global_batch_size=32,
micro_batch_size=2,
seq_length=4096,
# Optimizer
warmup_steps=500,
constant_steps=0,
min_lr=3e-5,
max_lr=3e-4,
# Training function
fn=pretrain,
) -> run.Partial:
"""
Create a pre-training recipe for Qwen2 500m model.
This function sets up a complete configuration for pre-training, including
model, trainer, data, logging, optimization, and resumption settings.
Args:
dir (Optional[str]): Directory for saving logs and checkpoints.
name (str): Name of the pre-training run.
tensor_parallelism (int): Degree of tensor model parallelism.
pipeline_parallelism (int): Degree of pipeline model parallelism.
pipeline_parallelism_type (Optional[torch.dtype]): Data type for pipeline parallelism.
virtual_pipeline_parallelism (Optional[int]): Size of virtual pipeline parallelism.
context_parallelism (int): Degree of context parallelism.
sequence_parallelism (bool): Whether to use sequence parallelism.
num_nodes (int): Number of compute nodes to use.
num_gpus_per_node (int): Number of GPUs per node.
max_steps (int): Maximum number of training steps.
precision (str): Precision configuration, one of fp32, 16-mixed or bf16-mixed.
accumulate_grad_batches (int): Number of steps per gradient accumulation.
gradient_clip_val (float): Value for gradient clipping.
limit_test_batches (int): Limit the number of test batches.
limit_val_batches (int): Limit the number of validation batches.
log_every_n_steps (int): Log every n steps.
val_check_interval (int): Run validation every N steps.
global_batch_size (int): Global batch size.
micro_batch_size (int): Micro batch size.
seq_length (int): Sequence length.
warmup_steps (int): Number of warmup steps.
constant_steps (int): Number of constant steps.
min_lr (float): Minimum learning rate.
max_lr (float): Maximum learning rate.
fn (Callable): The pre-training function to use.
Returns:
run.Partial: Partial configuration for pre-training.
Examples:
CLI usage:
$ nemo llm pretrain --factory qwen2_500m
$ nemo llm pretrain --factory "qwen2_500m(num_nodes=1, name='my_qwen2_pretrain')"
Python API usage:
>>> recipe = pretrain_recipe(name="qwen2_pretrain", num_nodes=1)
>>> print(recipe)
Note:
This recipe uses a mock dataset, look for the finetune examples to see how to change the dataset.
"""
return run.Partial(
fn,
model=model(),
trainer=qwen2_trainer(
tensor_parallelism=tensor_parallelism,
pipeline_parallelism=pipeline_parallelism,
pipeline_parallelism_type=pipeline_parallelism_type,
virtual_pipeline_parallelism=virtual_pipeline_parallelism,
context_parallelism=context_parallelism,
sequence_parallelism=sequence_parallelism,
num_nodes=num_nodes,
num_gpus_per_node=num_gpus_per_node,
max_steps=max_steps,
precision=precision,
accumulate_grad_batches=accumulate_grad_batches,
limit_test_batches=limit_test_batches,
limit_val_batches=limit_val_batches,
log_every_n_steps=log_every_n_steps,
val_check_interval=val_check_interval,
callbacks=[run.Config(TimingCallback)],
),
data=run.Config(
MockDataModule,
seq_length=seq_length,
global_batch_size=global_batch_size,
micro_batch_size=micro_batch_size,
),
log=default_log(dir=dir, name=name, tensorboard_logger=tensorboard_logger(name=name)),
optim=distributed_fused_adam_with_cosine_annealing(
precision=precision,
warmup_steps=warmup_steps,
constant_steps=constant_steps,
min_lr=min_lr,
max_lr=max_lr,
clip_grad=gradient_clip_val,
),
resume=default_resume(),
)
@run.cli.factory(target=finetune, name=NAME)
def finetune_recipe(
dir: Optional[str] = None,
name: str = "default",
num_nodes: int = 1,
num_gpus_per_node: int = 8,
peft_scheme: Optional[str] = 'lora',
packed_sequence: bool = False,
) -> run.Partial:
"""
Create a fine-tuning recipe for Qwen2 500m model.
This function sets up a complete configuration for fine-tuning, including
model, trainer, data, logging, optimization, and resumption settings.
The recipe uses LoRA (Low-Rank Adaptation) for efficient fine-tuning, unless peft_scheme is set to None.
Args:
dir (Optional[str]): Directory for saving logs and checkpoints.
name (str): Name of the fine-tuning run.
num_nodes (int): Number of compute nodes to use.
num_gpus_per_node (int): Number of GPUs per node.
peft_scheme (Optional[str]): Name of the peft scheme to use for fine-tuning.
Allowed values: 'lora'/'dora'/'none'/None.
packed_sequence (Optional[bool]): Packing multiple training sequences into one long sequence for training
efficiency. Default sequence length is 2048.
Returns:
run.Partial: Partial configuration for fine-tuning.
Examples:
CLI usage:
$ nemo llm finetune --factory qwen2_500m
Python API usage:
>>> recipe = finetune_recipe(name="qwen2_500m_finetune", num_nodes=2)
>>> print(recipe)
Note:
This recipe uses the SQuAD dataset for fine-tuning. For more information
on fine-tuning LLMs with NeMo, see the fine-tuning guide in the
`examples/llm/finetune/` directory.
"""
recipe = default_finetune_recipe(
model(), "Qwen/Qwen2-0.5B", dir, name, num_nodes, num_gpus_per_node, packed_sequence
)
if peft_scheme is None or peft_scheme.lower() == 'none':
recipe.optim.config.lr = 5e-6
elif peft_scheme.lower() in ['lora', 'dora']:
recipe.peft = run.Config(PEFT_STR2CLS[peft_scheme.lower()])
recipe.optim.config.lr = 1e-4
else:
raise ValueError(f"Unrecognized peft scheme: {peft_scheme}")
return recipe