-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathtile_iterator_tensor_op.h
671 lines (520 loc) · 19.8 KB
/
tile_iterator_tensor_op.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
/***************************************************************************************************
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief
*/
#pragma once
#include "cutlass/array.h"
#include "cutlass/tensor_ref.h"
#include "cutlass/layout/matrix.h"
#include "cutlass/layout/pitch_linear.h"
#include "cutlass/epilogue/warp/tensor_op_policy.h"
/////////////////////////////////////////////////////////////////////////////////////////////////
namespace cutlass {
namespace epilogue {
namespace warp {
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Template for reading and writing tiles of accumulators to shared memory
template <
typename WarpShape, ///< shape of warp-level GEMM (concept: MatrixShape)
typename OperatorShape, ///< matrix multiply operation shape (concept: gemm::GemmShape)
typename Element, ///< data type of element to be written
typename Layout ///< target shared memory layout
>
class TileIteratorTensorOp;
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Template for reading and writing tiles of accumulators to shared memory
template <
typename WarpShape_, ///< shape of warp-level GEMM (concept: GemmShape)
typename OperatorShape_, ///< matrix multiply operation shape (concept: gemm::GemmShape)
typename Element_ ///< data type of element to be written
>
class TileIteratorTensorOp<WarpShape_, OperatorShape_, Element_, layout::RowMajor> {
public:
using WarpShape = WarpShape_;
using OperatorShape = OperatorShape_;
using Element = Element_;
using Layout = layout::RowMajor;
using TensorLayout = Layout;
using TensorRef = TensorRef<Element, Layout>; ///< Tensor Reference object
using TensorCoord = MatrixCoord; ///< Logical coordinate in referenced tensor
using Index = typename TensorRef::Index;
using LongIndex = typename TensorRef::LongIndex;
using Policy = TensorOpPolicy<WarpShape, OperatorShape, Layout>;
/// Shape of the tile in memory
using Shape = MatrixShape<
Policy::kRowsPerIteration,
WarpShape::kN
>;
/// This is the fragment size produced by one access of the iterator.
using Fragment = Array<
Element,
Policy::OperatorCount::kColumn * Policy::kElementsPerAccess>;
/// This is the complete warp-level accumulator tile.
//using AccumulatorTile = typename Operator::FragmentC;
/// Number of times this iterator can be incremented
static int const kIterations = Policy::kIterations;
/// Number of times this iterator can be incremented
using TileIterations = typename Policy::TileIterations;
// Internal constants
struct Detail {
static int const kLanesInQuad = 4;
};
/// Padding quantity
using Padding = MatrixShape<
0,
Detail::kLanesInQuad * Policy::kElementsPerAccess>;
private:
/// Storage type for accessing memory
using AccessType = AlignedArray<Element, Policy::kElementsPerAccess>;
//
// Data members
//
/// Internal pointer to memory
AccessType *pointer_;
/// Internal layout object
Layout layout_;
/// Thread offset
MatrixCoord thread_offset_;
public:
/// Default constructor
CUTLASS_HOST_DEVICE
TileIteratorTensorOp(): pointer_(nullptr) { }
/// Constructor from TensorRef
CUTLASS_HOST_DEVICE
TileIteratorTensorOp(
TensorRef const &ref,
unsigned lane_id
):
pointer_(reinterpret_cast<AccessType *>(ref.data())),
layout_(ref.stride()[0] / Policy::kElementsPerAccess) {
int quad_id = (lane_id / Detail::kLanesInQuad);
int lane_in_quad = (lane_id % Detail::kLanesInQuad);
thread_offset_ = {
quad_id, lane_in_quad * Policy::kElementsPerAccess
};
pointer_ += layout_({thread_offset_.row(), thread_offset_.column() / Policy::kElementsPerAccess});
}
/// Adds a pointer offset
CUTLASS_HOST_DEVICE
TileIteratorTensorOp & add_pointer_offset(Index pointer_offset) {
pointer_ += pointer_offset / Policy::kElementsPerAccess;
return *this;
}
///< advances in units of whole tiles along the logical coordinate space of the tensor
CUTLASS_HOST_DEVICE
TileIteratorTensorOp & add_tile_offset(TensorCoord const &tile_offset) {
MatrixCoord coord_offset(
tile_offset.row() * Shape::kRow,
tile_offset.column() * Shape::kColumn
);
thread_offset_ += coord_offset;
pointer_ += layout_({
coord_offset.row(),
coord_offset.column() / Policy::kElementsPerAccess
});
return *this;
}
///< advances in units of whole tiles along the logical coordinate space of the tensor
CUTLASS_HOST_DEVICE
TileIteratorTensorOp & operator+=(TensorCoord const &tile_offset) {
add_tile_offset(tile_offset);
return *this;
}
/// Store
CUTLASS_HOST_DEVICE
void store_with_pointer_offset(Fragment const &frag, Index pointer_offset) {
AccessType const *frag_ptr = reinterpret_cast<AccessType const *>(&frag);
CUTLASS_PRAGMA_UNROLL
for (int n = 0; n < Policy::OperatorCount::kColumn; ++n) {
pointer_[n * Detail::kLanesInQuad + pointer_offset / Policy::kElementsPerAccess] = frag_ptr[n];
}
}
/// Store
CUTLASS_HOST_DEVICE
void store(Fragment const &frag) {
store_with_pointer_offset(frag, 0);
}
/// Load
CUTLASS_HOST_DEVICE
void load_with_pointer_offset(Fragment &frag, Index pointer_offset) const {
AccessType *frag_ptr = reinterpret_cast<AccessType *>(&frag);
CUTLASS_PRAGMA_UNROLL
for (int n = 0; n < Policy::OperatorCount::kColumn; ++n) {
frag_ptr[n] = pointer_[n * Detail::kLanesInQuad + pointer_offset / Policy::kElementsPerAccess];
}
}
/// Load
CUTLASS_HOST_DEVICE
void load(Fragment &frag) const {
load_with_pointer_offset(frag, 0);
}
CUTLASS_HOST_DEVICE
TileIteratorTensorOp & operator++() {
return add_tile_offset({1, 0});
}
/// Set smem base address
CUTLASS_HOST_DEVICE
void set_smem_base_address(Index address) {
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Template for reading and writing tiles of accumulators to shared memory
template <
typename WarpShape_, ///< shape of warp-level GEMM (concept: GemmShape)
typename OperatorShape_, ///< matrix multiply operation shape (concept: gemm::GemmShape)
typename Element_, ///< data type of element to be written
int InterleavedK ///< number of interleaved k
>
class TileIteratorTensorOp<WarpShape_, OperatorShape_, Element_,
layout::ColumnMajorInterleaved<InterleavedK> > {
public:
using WarpShape = WarpShape_;
using OperatorShape = OperatorShape_;
using Element = Element_;
using Layout = layout::ColumnMajorInterleaved<InterleavedK>;
using TensorLayout = Layout; ///< shared memory tensor ref layout
using TensorRef = TensorRef<Element, TensorLayout>; ///< Tensor Reference object
using TensorCoord = MatrixCoord; ///< Logical coordinate in referenced tensor
using Index = typename TensorRef::Index;
using LongIndex = typename TensorRef::LongIndex;
using Policy = TensorOpPolicy<WarpShape, OperatorShape, Layout>;
/// Shape of the tile in memory
using Shape = MatrixShape<
// Policy::kRowsPerIteration,
WarpShape::kM,
InterleavedK
>;
/// This is the fragment size produced by one tile
using Fragment = Array<
Element,
Policy::OperatorCount::kRow * Policy::kIterationsPerInstruction
* Policy::kElementsPerIteration>;
/// This is the fragment size produced by one iteration
// using Fragment = Array<
// Element, Policy::kElementsPerIteration >;
/// This is the complete warp-level accumulator tile.
//using AccumulatorTile = typename Operator::FragmentC;
/// Number of times this iterator can be incremented
using TileIterations = typename Policy::TileIterations;
// Internal constants
struct Detail {
static int const kLanesInQuad = 4;
};
/// Padding quantity
using Padding = MatrixShape<
0,
Detail::kLanesInQuad * Policy::kElementsPerIteration>;
private:
/// Storage type for accessing memory
using AccessType = AlignedArray<Element, Policy::kElementsPerAccess>;
//
// Data members
//
/// Internal pointer to memory
AccessType *pointer_;
/// Internal layout object
TensorLayout layout_;
/// Thread offset
MatrixCoord thread_offset_;
public:
/// Default constructor
CUTLASS_HOST_DEVICE
TileIteratorTensorOp(): pointer_(nullptr) { }
/// Constructor from TensorRef
CUTLASS_HOST_DEVICE
TileIteratorTensorOp(
TensorRef const &ref,
unsigned lane_id
):
pointer_(reinterpret_cast<AccessType *>(ref.data())),
layout_(ref.stride()[0]) {
int quad_id = (lane_id / Detail::kLanesInQuad);
int lane_in_quad = (lane_id % Detail::kLanesInQuad);
thread_offset_ = {
quad_id, lane_in_quad * Policy::kElementsPerIteration
};
pointer_ += (layout_({thread_offset_.row(), thread_offset_.column()}) / Policy::kElementsPerAccess);
}
/// Adds a pointer offset
CUTLASS_HOST_DEVICE
TileIteratorTensorOp & add_pointer_offset(Index pointer_offset) {
pointer_ += pointer_offset / Policy::kElementsPerAccess;
return *this;
}
///< advances in units of whole tiles along the logical coordinate space of the tensor
CUTLASS_HOST_DEVICE
TileIteratorTensorOp & add_tile_offset(TensorCoord const &tile_offset) {
MatrixCoord coord_offset(
tile_offset.row() * Shape::kRow,
tile_offset.column() * Shape::kColumn
);
thread_offset_ += coord_offset;
pointer_ += (layout_({
coord_offset.row(),
coord_offset.column()
}) / Policy::kElementsPerAccess);
return *this;
}
///< advances in units of whole tiles along the logical coordinate space of the tensor
CUTLASS_HOST_DEVICE
TileIteratorTensorOp & operator+=(TensorCoord const &tile_offset) {
add_tile_offset(tile_offset);
return *this;
}
/// Store
CUTLASS_HOST_DEVICE
void store_with_pointer_offset(Fragment const &frag, Index pointer_offset) {
AccessType const *frag_ptr = reinterpret_cast<AccessType const *>(&frag);
CUTLASS_PRAGMA_UNROLL
for (int n = 0; n < Policy::OperatorCount::kRow * Policy::kIterationsPerInstruction; n++ ) {
AccessType *ptr = pointer_ + layout_({n * Policy::kRowsPerIteration, 0}) / Policy::kElementsPerAccess;
CUTLASS_PRAGMA_UNROLL
for (int a = 0; a < Policy::kAccessPerIteration; ++a) {
ptr[a + pointer_offset / Policy::kElementsPerAccess] = frag_ptr[n * Policy::kAccessPerIteration + a];
// printf("store thread %d, address %p, bank %ld\n", threadIdx.x, pointer_+a+n*Detail::kLanesInQuad,
// ((long long)(pointer_+a+n*Detail::kLanesInQuad)>>2)&0x1f);
}
}
}
/// Store
CUTLASS_HOST_DEVICE
void store(Fragment const &frag) {
store_with_pointer_offset(frag, 0);
}
/// Load
CUTLASS_HOST_DEVICE
void load_with_pointer_offset(Fragment &frag, Index pointer_offset) const {
AccessType *frag_ptr = reinterpret_cast<AccessType *>(&frag);
CUTLASS_PRAGMA_UNROLL
for (int n = 0; n < Policy::OperatorCount::kRow * Policy::kIterationsPerInstruction; n++ ) {
AccessType *ptr = pointer_ + layout_({n * Policy::kRowsPerIteration, 0}) / Policy::kElementsPerAccess;
CUTLASS_PRAGMA_UNROLL
for (int a = 0; a < Policy::kAccessPerIteration; ++a) {
frag_ptr[n * Policy::kAccessPerIteration + a] = ptr[a + pointer_offset / Policy::kElementsPerAccess];
}
}
}
/// Load
CUTLASS_HOST_DEVICE
void load(Fragment &frag) const {
load_with_pointer_offset(frag, 0);
}
CUTLASS_HOST_DEVICE
TileIteratorTensorOp & operator++() {
return add_tile_offset({0, 1});
}
/// Set smem base address
CUTLASS_HOST_DEVICE
void set_smem_base_address(Index address) {
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Template for reading and writing tiles of accumulators to shared memory
template <
typename WarpShape_, ///< shape of warp-level GEMM (concept: GemmShape)
typename OperatorShape_, ///< matrix multiply operation shape (concept: gemm::GemmShape)
typename Element_, ///< data type of element to be written
typename Layout_
>
class TileIteratorTensorOpCanonical {
public:
using WarpShape = WarpShape_;
using OperatorShape = OperatorShape_;
using Element = Element_;
using Layout = Layout_;
using TensorRef = TensorRef<Element, Layout>; ///< Tensor Reference object
using TensorCoord = MatrixCoord; ///< Logical coordinate in referenced tensor
using Index = typename TensorRef::Index;
using LongIndex = typename TensorRef::LongIndex;
using Policy = TensorOpPolicy<WarpShape, OperatorShape, Layout>;
static int const kAccessSize = 1;
static int const kAccessCount = Policy::kElementsPerAccess / kAccessSize;
/// Shape of the tile in memory
using Shape = MatrixShape<
Policy::kRowsPerIteration,
WarpShape::kN
>;
/// This is the fragment size produced by one access of the iterator.
using Fragment = Array<
Element,
Policy::OperatorCount::kColumn * Policy::kElementsPerAccess>;
/// This is the complete warp-level accumulator tile.
//using AccumulatorTile = typename Operator::FragmentC;
/// Number of times this iterator can be incremented
static int const kIterations = Policy::kIterations;
// Internal constants
struct Detail {
static int const kLanesInQuad = 4;
};
/// Padding quantity
using Padding = MatrixShape<
0,
Detail::kLanesInQuad * Policy::kElementsPerAccess>;
private:
/// Storage type for accessing memory
using AccessType = AlignedArray<Element, kAccessSize>;
//
// Data members
//
/// Internal pointer to memory
AccessType *pointer_;
/// Internal layout object
Layout layout_;
/// Guard to indicate whether the shape is divisible
bool divisible_;
/// Extent of the output tensor
MatrixCoord extent_;
/// Thread offset
MatrixCoord thread_offset_;
public:
/// Default constructor
CUTLASS_HOST_DEVICE
TileIteratorTensorOpCanonical(): pointer_(nullptr) { }
/// Constructor from TensorRef
CUTLASS_HOST_DEVICE
TileIteratorTensorOpCanonical(
TensorRef const &ref,
unsigned lane_id
):
pointer_(reinterpret_cast<AccessType *>(ref.data())),
layout_(ref.stride()[0]),
divisible_(true),
extent_(WarpShape::kM, WarpShape::kN) {
int quad_id = (lane_id / Detail::kLanesInQuad);
int lane_in_quad = (lane_id % Detail::kLanesInQuad);
thread_offset_ = {
quad_id, lane_in_quad * Policy::kElementsPerAccess
};
pointer_ += layout_({thread_offset_.row(), thread_offset_.column()});
}
/// Constructor from TensorRef
CUTLASS_HOST_DEVICE
TileIteratorTensorOpCanonical(
TensorRef const &ref,
TensorCoord const &extent,
unsigned lane_id
):
pointer_(reinterpret_cast<AccessType *>(ref.data())),
layout_(ref.stride()[0]),
divisible_(false),
extent_(extent) {
int quad_id = (lane_id / Detail::kLanesInQuad);
int lane_in_quad = (lane_id % Detail::kLanesInQuad);
thread_offset_ = {
quad_id, lane_in_quad * Policy::kElementsPerAccess
};
pointer_ += layout_({thread_offset_.row(), thread_offset_.column()});
}
/// Adds a pointer offset
CUTLASS_HOST_DEVICE
TileIteratorTensorOpCanonical & add_pointer_offset(Index pointer_offset) {
pointer_ += pointer_offset;
return *this;
}
///< advances in units of whole tiles along the logical coordinate space of the tensor
CUTLASS_HOST_DEVICE
TileIteratorTensorOpCanonical & add_tile_offset(TensorCoord const &tile_offset) {
MatrixCoord coord_offset(
tile_offset.row() * Shape::kRow,
tile_offset.column() * Shape::kColumn
);
thread_offset_ += coord_offset;
pointer_ += layout_({
coord_offset.row(),
coord_offset.column()
});
return *this;
}
///< advances in units of whole tiles along the logical coordinate space of the tensor
CUTLASS_HOST_DEVICE
TileIteratorTensorOpCanonical & operator+=(TensorCoord const &tile_offset) {
add_tile_offset(tile_offset);
return *this;
}
/// Store
CUTLASS_HOST_DEVICE
void store_with_pointer_offset(Fragment const &frag, Index pointer_offset) {
AccessType const *frag_ptr = reinterpret_cast<AccessType const *>(&frag);
CUTLASS_PRAGMA_UNROLL
for (int n = 0; n < Policy::OperatorCount::kColumn; ++n) {
CUTLASS_PRAGMA_UNROLL
for (int a = 0; a < kAccessCount; ++a) {
int ptr_idx = n * Detail::kLanesInQuad * kAccessCount + pointer_offset + a;
int frag_idx = n * kAccessCount + a;
int col = thread_offset_.column() + n * Detail::kLanesInQuad * Policy::kElementsPerAccess + a;
if (divisible_ || (thread_offset_.row() < extent_.row() && col < extent_.column())) {
pointer_[ptr_idx] = frag_ptr[frag_idx];
}
}
}
}
/// Store
CUTLASS_HOST_DEVICE
void store(Fragment const &frag) {
store_with_pointer_offset(frag, 0);
}
/// Load
CUTLASS_HOST_DEVICE
void load_with_pointer_offset(Fragment &frag, Index pointer_offset) const {
AccessType *frag_ptr = reinterpret_cast<AccessType *>(&frag);
CUTLASS_PRAGMA_UNROLL
for (int n = 0; n < Policy::OperatorCount::kColumn; ++n) {
CUTLASS_PRAGMA_UNROLL
for (int a = 0; a < kAccessCount; ++a) {
int ptr_idx = n * Detail::kLanesInQuad * kAccessCount + pointer_offset + a;
int frag_idx = n * kAccessCount + a;
int col = thread_offset_.column() + n * Detail::kLanesInQuad * Policy::kElementsPerAccess + a;
if (divisible_ || (thread_offset_.row() < extent_.row() && col < extent_.column())) {
frag_ptr[frag_idx] = pointer_[ptr_idx];
}
}
}
}
/// Load
CUTLASS_HOST_DEVICE
void load(Fragment &frag) const {
load_with_pointer_offset(frag, 0);
}
CUTLASS_HOST_DEVICE
TileIteratorTensorOpCanonical & operator++() {
return add_tile_offset({1, 0});
}
/// Set smem base address
CUTLASS_HOST_DEVICE
void set_smem_base_address(Index address) {
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace warp
} // namespace epilogue
} // namespace cutlass
/////////////////////////////////////////////////////////////////////////////////////////////////