-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathquaternion.h
665 lines (559 loc) · 18.3 KB
/
quaternion.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Defines a densely packed quaternion object intended for storing data in registers and
executing quaternion operations within a CUDA or host thread.
*/
#pragma once
#include "cutlass/cutlass.h"
#include "cutlass/array.h"
#include "cutlass/real.h"
#include "cutlass/coord.h"
#include "cutlass/matrix.h"
#include "cutlass/fast_math.h"
#include "cutlass/layout/vector.h"
namespace cutlass {
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Quaternion: xi + yj + zk + w
template <
typename Element_ = float ///< element type
>
class Quaternion : public Array<Element_, 4> {
public:
/// Logical rank of tensor index space
static int const kRank = 1;
/// Number of elements
static int const kExtent = 4;
/// Base class is a four-element array
using Base = Array<Element_, kExtent>;
/// Element type
using Element = typename Base::Element;
/// Reference type to an element
using Reference = typename Base::reference;
/// Index type
using Index = int;
/// Quaternion storage - imaginary part
static int const kX = 0;
/// Quaternion storage - imaginary part
static int const kY = 1;
/// Quaternion storage - imaginary part
static int const kZ = 2;
/// Quaternion storage - real part
static int const kW = 3;
public:
//
// Methods
//
/// Constructs a quaternion q = 0
CUTLASS_HOST_DEVICE
Quaternion() {
Base::at(kX) = Element();
Base::at(kY) = Element();
Base::at(kZ) = Element();
Base::at(kW) = Element();
}
/// Constructs a quaternion q = w + 0*i + 0*j + 0*k
CUTLASS_HOST_DEVICE
Quaternion(
Element w_
) {
Base::at(kX) = Element();
Base::at(kY) = Element();
Base::at(kZ) = Element();
Base::at(kW) = w_;
}
/// Constructs a quaternion q = w + x*i + y*j + z*k
CUTLASS_HOST_DEVICE
Quaternion(
Element x_,
Element y_,
Element z_,
Element w_
) {
Base::at(kX) = x_;
Base::at(kY) = y_;
Base::at(kZ) = z_;
Base::at(kW) = w_;
}
/// Constructs a quaternion from a vector representing the imaginary part and a real number
CUTLASS_HOST_DEVICE
Quaternion(
Matrix3x1<Element> const &imag_,
Element w_ = Element()
) {
Base::at(kX) = imag_[0];
Base::at(kY) = imag_[1];
Base::at(kZ) = imag_[2];
Base::at(kW) = w_;
}
/// Returns a reference to the element at a given Coord
CUTLASS_HOST_DEVICE
Reference at(Index idx) const {
return Base::at(idx);
}
/// Returns a reference to the element at a given Coord
CUTLASS_HOST_DEVICE
Reference at(Index idx) {
return Base::at(idx);
}
/// Accesses the x element of the imaginary part of the quaternion
CUTLASS_HOST_DEVICE
Element x() const {
return Base::at(kX);
}
/// Accesses the x element of the imaginary part of the quaternion
CUTLASS_HOST_DEVICE
Reference x() {
return Base::at(kX);
}
/// Accesses the y element of the imaginary part of the quaternion
CUTLASS_HOST_DEVICE
Element y() const {
return Base::at(kY);
}
/// Accesses the y element of the imaginary part of the quaternion
CUTLASS_HOST_DEVICE
Reference y() {
return Base::at(kY);
}
/// Accesses the z element of the imaginary part of the quaternion
CUTLASS_HOST_DEVICE
Element z() const {
return Base::at(kZ);
}
/// Accesses the z element of the imaginary part of the quaternion
CUTLASS_HOST_DEVICE
Reference z() {
return Base::at(kZ);
}
/// Accesses the real part of the quaternion
CUTLASS_HOST_DEVICE
Element w() const {
return Base::at(kW);
}
/// Accesses the real part of the quaternion
CUTLASS_HOST_DEVICE
Reference w() {
return Base::at(kW);
}
/// Returns the pure imaginary part of the quaternion as a 3-vector
CUTLASS_HOST_DEVICE
Matrix3x1<Element> pure() const {
return Matrix3x1<Element>(x(), y(), z());
}
/// Returns a quaternion representation of a spatial rotation given a unit-length axis and
/// a rotation in radians.
CUTLASS_HOST_DEVICE
static Quaternion<Element> rotation(
Matrix3x1<Element> const &axis_unit, ///< axis of rotation (assumed to be unit length)
Element theta) { ///< angular rotation in radians
Element s = fast_sin(theta / Element(2));
return Quaternion(
s * axis_unit[0],
s * axis_unit[1],
s * axis_unit[2],
fast_cos(theta / Element(2))
);
}
/// Returns a quaternion representation of a spatial rotation represented as a
/// unit-length rotation axis (r_x, r_y, r_z) and an angular rotation in radians
CUTLASS_HOST_DEVICE
static Quaternion<Element> rotation(
Element r_x,
Element r_y,
Element r_z,
Element theta) { ///< angular rotation in radians
return rotation({r_x, r_y, r_z}, theta);
}
/// Geometric rotation of a 3-element vector
CUTLASS_HOST_DEVICE
Matrix3x1<Element> rotate(Matrix3x1<Element> const &rhs) const {
return (*this * Quaternion<Element>(rhs, 0) * reciprocal(*this)).pure();
}
/// Inverse rotation operation
CUTLASS_HOST_DEVICE
Matrix3x1<Element> rotate_inv(Matrix3x1<Element> const &rhs) const {
return (reciprocal(*this) * Quaternion<Element>(rhs, 0) * *this).pure();
}
/// Rotates a 3-vector assuming this is a unit quaternion (a spinor)
CUTLASS_HOST_DEVICE
Matrix3x1<Element> spinor(Matrix3x1<Element> const &rhs) const {
return (*this * Quaternion<Element>(rhs, 0) * conj(*this)).pure();
}
/// Inverse rotation of 3-vector assuming this is a unit quaternion (a spinor)
CUTLASS_HOST_DEVICE
Matrix3x1<Element> spinor_inv(Matrix3x1<Element> const &rhs) const {
return (conj(*this) * Quaternion<Element>(rhs, 0) * *this).pure();
}
/// In-place addition
template <typename Element>
CUTLASS_HOST_DEVICE
Quaternion<Element> &operator+=(Quaternion<Element> const &rhs) {
*this = (*this + rhs);
return *this;
}
/// In-place subtraction
template <typename Element>
CUTLASS_HOST_DEVICE
Quaternion<Element> &operator-=(Quaternion<Element> const &rhs) {
*this = (*this - rhs);
return *this;
}
/// In-place multiplication
template <typename T>
CUTLASS_HOST_DEVICE
Quaternion<Element> &operator*=(Quaternion<Element> const &rhs) {
*this = (*this * rhs);
return *this;
}
/// Scalar multiplication
template <typename T>
CUTLASS_HOST_DEVICE
Quaternion<Element> &operator*=(Element s) {
*this = (*this * s);
return *this;
}
/// In-place Division
template <typename T>
CUTLASS_HOST_DEVICE
Quaternion<Element> &operator/=(Quaternion<Element> const &rhs) {
*this = (*this / rhs);
return *this;
}
/// In-place Division
template <typename T>
CUTLASS_HOST_DEVICE
Quaternion<Element> &operator/=(Element s) {
*this = (*this / s);
return *this;
}
/// Computes a 3x3 rotation matrix (row-major representation)
CUTLASS_HOST_DEVICE
Matrix3x3<Element> as_rotation_matrix_3x3() const {
Matrix3x3<Element> m(
w() * w() + x() * x() - y() * y() - z() * z(),
2 * x() * y() - 2 * w() * z(),
2 * x() * z() + 2 * w() * y(),
2 * x() * y() + 2 * w() * z(),
w() * w() - x() * x() + y() * y() - z() * z(),
2 * y() * z() - 2 * w() * x(),
2 * x() * z() - 2 * w() * y(),
2 * y() * z() + 2 * w() * x(),
w() * w() - x() * x() - y() * y() + z() * z()
);
return m;
}
/// Computes a 4x4 rotation matrix (row-major representation)
CUTLASS_HOST_DEVICE
Matrix4x4<Element> as_rotation_matrix_4x4() const {
Matrix4x4<Element> m = Matrix4x4<Element>::identity();
m.set_slice_3x3(as_rotation_matrix_3x3());
return m;
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Constructs a quaternion that is non-zero only in its real element.
template <typename Element>
CUTLASS_HOST_DEVICE
Quaternion<Element> make_Quaternion(
Element w) { ///< real part
return Quaternion<Element>(w);
}
/// Constructs a quaternion from a vector and real
template <typename Element>
CUTLASS_HOST_DEVICE
Quaternion<Element> make_Quaternion(
Matrix3x1<Element> const &imag, ///< imaginary party as a vector
Element w) { ///< real part
return Quaternion<Element>(imag, w);
}
/// Constructs a quaternion from a unit-length rotation axis and a rotation
/// angle in radians
template <typename Element>
CUTLASS_HOST_DEVICE
Quaternion<Element> make_QuaternionRotation(
Matrix3x1<Element> const &axis_unit, ///< rotation axis (unit-length)
Element w) { ///< rotation angle in radians
return Quaternion<Element>::rotation(axis_unit, w);
}
/// Constructs a quaternion q = xi + yj + zk + w
template <typename Element>
CUTLASS_HOST_DEVICE
Quaternion<Element> make_Quaternion(Element x, Element y, Element z, Element w) {
return Quaternion<Element>(x, y, z, w);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Returns the real part of the quaternion number
template <typename Element>
CUTLASS_HOST_DEVICE
Element const &real(Quaternion<Element> const &q) {
return q.w();
}
/// Returns the real part of the quaternion number
template <typename Element>
CUTLASS_HOST_DEVICE
Element &real(Quaternion<Element> &q) {
return q.w();
}
/// Returns the magnitude of the quaternion number
template <typename Element>
CUTLASS_HOST_DEVICE
Element abs(Quaternion<Element> const &q) {
return fast_sqrt(norm(q));
}
/// Quaternion conjugate
template <typename Element>
CUTLASS_HOST_DEVICE
Quaternion<Element> conj(Quaternion<Element> const &q) {
return make_Quaternion(
-q.x(),
-q.y(),
-q.z(),
q.w()
);
}
/// Computes the squared magnitude of the quaternion
template <typename Element>
CUTLASS_HOST_DEVICE
Element norm(Quaternion<Element> const &q) {
return q.x() * q.x() + q.y() * q.y() + q.z() * q.z() + q.w() * q.w();
}
/// Quaternion reciprocal
template <typename Element>
CUTLASS_HOST_DEVICE
Quaternion<Element> reciprocal(Quaternion<Element> const &q) {
Element nsq = norm(q);
return make_Quaternion(
-q.x() / nsq,
-q.y() / nsq,
-q.z() / nsq,
q.w() / nsq
);
}
/// Returns a unit-length quaternion
template <typename Element>
CUTLASS_HOST_DEVICE
Quaternion<Element> unit(Quaternion<Element> const &q) {
Element rcp_mag = Element(1) / abs(q);
return make_Quaternion(
q.x() * rcp_mag,
q.y() * rcp_mag,
q.z() * rcp_mag,
q.w() * rcp_mag
);
}
/// Quaternion exponential
template <typename Element>
CUTLASS_HOST_DEVICE
Quaternion<Element> exp(Quaternion<Element> const &q) {
Element exp_ = fast_exp(q.w());
Element imag_norm = fast_sqrt(q.x() * q.x() + q.y() * q.y() + q.z() * q.z());
Element sin_norm = fast_sin(imag_norm);
return make_Quaternion(
exp_ * q.x() * sin_norm / imag_norm,
exp_ * q.y() * sin_norm / imag_norm,
exp_ * q.z() * sin_norm / imag_norm,
exp_ * fast_cos(imag_norm)
);
}
/// Quaternion natural logarithm
template <typename Element>
CUTLASS_HOST_DEVICE
Quaternion<Element> log(Quaternion<Element> const &q) {
Element v = fast_sqrt(q.x() * q.x() + q.y() * q.y() + q.z() * q.z());
Element s = fast_acos(q.w() / abs(q)) / v;
return make_Quaternion(
q.x() * s,
q.y() * s,
q.z() * s,
fast_log(q.w())
);
}
/// Gets the rotation angle from a unit-length quaternion
template <typename Element>
CUTLASS_HOST_DEVICE
Element get_rotation_angle(Quaternion<Element> const &q_unit) {
return fast_acos(q_unit.w()) * Element(2);
}
/// Gets the rotation axis from a unit-length quaternion
template <typename Element>
CUTLASS_HOST_DEVICE
Matrix3x1<Element> get_rotation_axis(Quaternion<Element> const &q_unit) {
return q_unit.pure().unit();
}
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Equality operator
template <typename Element>
CUTLASS_HOST_DEVICE
bool operator==(Quaternion<Element> const &lhs, Quaternion<Element> const &rhs) {
return lhs.x() == rhs.x() &&
lhs.y() == rhs.y() &&
lhs.z() == rhs.z() &&
lhs.w() == rhs.w();
}
/// Inequality operator
template <typename Element>
CUTLASS_HOST_DEVICE
bool operator!=(Quaternion<Element> const &lhs, Quaternion<Element> const &rhs) {
return !(lhs == rhs);
}
/// Quaternion scalar multiplication
template <typename Element>
CUTLASS_HOST_DEVICE
Quaternion<Element> operator*(Quaternion<Element> q, Element s) {
return make_Quaternion(
q.x() * s,
q.y() * s,
q.z() * s,
q.w() * s
);
}
/// Quaternion scalar multiplication
template <typename Element>
CUTLASS_HOST_DEVICE
Quaternion<Element> operator*(Element s, Quaternion<Element> const &q) {
return make_Quaternion(
s * q.x(),
s * q.y(),
s * q.z(),
s * q.w()
);
}
/// Quaternion scalar division
template <typename Element>
CUTLASS_HOST_DEVICE
Quaternion<Element> operator/(Quaternion<Element> const &q, Element s) {
return make_Quaternion(
q.x() / s,
q.y() / s,
q.z() / s,
q.w() / s
);
}
/// Quaternion unary negation
template <typename Element>
CUTLASS_HOST_DEVICE
Quaternion<Element> operator-(Quaternion<Element> const &q) {
return make_Quaternion(
-q.x(),
-q.y(),
-q.z(),
-q.w()
);
}
/// Quaternion addition
template <typename Element>
CUTLASS_HOST_DEVICE
Quaternion<Element> operator+(Quaternion<Element> const &lhs, Quaternion<Element> const &rhs) {
return make_Quaternion(
lhs.x() + rhs.x(),
lhs.y() + rhs.y(),
lhs.z() + rhs.z(),
lhs.w() + rhs.w()
);
}
/// Quaternion subtraction
template <typename Element>
CUTLASS_HOST_DEVICE
Quaternion<Element> operator-(Quaternion<Element> const &lhs, Quaternion<Element> const &rhs) {
return make_Quaternion(
lhs.x() - rhs.x(),
lhs.y() - rhs.y(),
lhs.z() - rhs.z(),
lhs.w() - rhs.w()
);
}
/// Quaternion product
template <typename Element>
CUTLASS_HOST_DEVICE
Quaternion<Element> operator*(Quaternion<Element> const &lhs, Quaternion<Element> const &rhs) {
return make_Quaternion(
lhs.w() * rhs.x() + rhs.w() * lhs.x() + lhs.y() * rhs.z() - lhs.z() * rhs.y(),
lhs.w() * rhs.y() + rhs.w() * lhs.y() + lhs.z() * rhs.x() - lhs.x() * rhs.z(),
lhs.w() * rhs.z() + rhs.w() * lhs.z() + lhs.x() * rhs.y() - lhs.y() * rhs.x(),
lhs.w() * rhs.w() - lhs.x() * rhs.x() - lhs.y() * rhs.y() - lhs.z() * rhs.z()
);
}
/// Quaternion division
template <typename Element>
CUTLASS_HOST_DEVICE
Quaternion<Element> operator/(Quaternion<Element> const &lhs, Quaternion<Element> const &rhs) {
return lhs * reciprocal(rhs);
}
/// Quaternion scalar division
template <typename Element>
CUTLASS_HOST_DEVICE
Quaternion<Element> operator/(Element s, Quaternion<Element> const &q) {
return s * reciprocal(q);
}
/// Rotates a 3-vector assuming this is a unit quaternion (a spinor). This avoids computing
/// a reciprocal.
template <typename Element>
CUTLASS_HOST_DEVICE
Matrix3x1<Element> spinor_rotation(
Quaternion<Element> const &spinor, /// unit-length quaternion
Matrix3x1<Element> const &rhs) { /// arbitrary 3-vector
return (spinor * Quaternion<Element>(rhs, 0) * conj(spinor)).pure();
}
/// Inverse rotation of 3-vector assuming this is a unit quaternion (a spinor). This avoids computing
/// a reciprocal.
template <typename Element>
CUTLASS_HOST_DEVICE
Matrix3x1<Element> spinor_rotation_inv(
Quaternion<Element> const &spinor, /// unit-length quaternion
Matrix3x1<Element> const &rhs) { /// arbitrary 3-vector
return (conj(spinor) * Quaternion<Element>(rhs, 0) * spinor).pure();
}
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Partial specialization for Quaternion-valued type.
template <typename T>
struct RealType< Quaternion<T> > {
using Type = T;
/// Number of elements
static int const kExtent = Quaternion<T>::kExtent;
CUTLASS_HOST_DEVICE
static Quaternion<T> from_real(double x) {
return Quaternion<T>(static_cast<T>(x));
}
};
//////////////////////////////////////////////////////////////////////////////////////////////////
template <>
CUTLASS_HOST_DEVICE
cutlass::Quaternion<half_t> from_real<cutlass::Quaternion<half_t> >(double r) {
return cutlass::Quaternion<half_t>(half_t(r));
}
template <>
CUTLASS_HOST_DEVICE
cutlass::Quaternion<float> from_real<cutlass::Quaternion<float> >(double r) {
return cutlass::Quaternion<float>(float(r));
}
template <>
CUTLASS_HOST_DEVICE
cutlass::Quaternion<double> from_real<cutlass::Quaternion<double> >(double r) {
return cutlass::Quaternion<double>(r);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace cutlass
/////////////////////////////////////////////////////////////////////////////////////////////////