Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

AttributeError: 'NoneType' object has no attribute 'cluster_poses' #91

Closed
NTheodoris opened this issue Apr 26, 2024 · 4 comments
Closed

Comments

@NTheodoris
Copy link

NTheodoris commented Apr 26, 2024

**When i try to run demo.py in conda envionment, i get this error ******

Warp 1.0.2 initialized:
CUDA Toolkit 11.5, Driver 12.4
Devices:
"cpu" : "x86_64"
"cuda:0" : "NVIDIA GeForce RTX 3060" (12 GiB, sm_86, mempool enabled)
Kernel cache:
/home/lms/.cache/warp/1.0.2
[init()] self.cfg:
lr: 0.0001
c_in: 6
zfar: 'Infinity'
debug: null
n_view: 1
run_id: 3wy8qqex
use_BN: true
exp_name: 2024-01-11-20-02-45
n_epochs: 62
save_dir: /home/bowenw/debug/2024-01-11-20-02-45/
use_mask: false
loss_type: pairwise_valid
optimizer: adam
batch_size: 64
crop_ratio: 1.1
enable_amp: true
use_normal: false
max_num_key: null
warmup_step: -1
input_resize:

  • 160
  • 160
    max_step_val: 1000
    vis_interval: 1000
    weight_decay: 0
    normalize_xyz: true
    resume_run_id: null
    clip_grad_norm: 'Infinity'
    lr_epoch_decay: 500
    render_backend: nvdiffrast
    train_num_pair: 5
    lr_decay_epochs:
  • 50
    n_epochs_warmup: 1
    make_pair_online: false
    gradient_max_norm: 'Infinity'
    max_step_per_epoch: 10000
    n_rendering_workers: 1
    save_epoch_interval: 100
    n_dataloader_workers: 100
    split_objects_across_gpus: true
    ckpt_dir: /home/lms/Github/deep_learning_vision_methods/src/foundation_pose6d/learning/training/../../weights/2024-01-11-20-02-45/model_best.pth

[init()] self.h5_file:None
[init()] Using pretrained model from /home/lms/Github/deep_learning_vision_methods/src/foundation_pose6d/learning/training/../../weights/2024-01-11-20-02-45/model_best.pth
[init()] init done
[init()] welcome
[init()] self.cfg:
lr: 0.0001
c_in: 6
zfar: .inf
debug: null
w_rot: 0.1
n_view: 1
run_id: null
use_BN: true
rot_rep: axis_angle
ckpt_dir: /home/lms/Github/deep_learning_vision_methods/src/foundation_pose6d/learning/training/../../weights/2023-10-28-18-33-37/model_best.pth
exp_name: 2023-10-28-18-33-37
save_dir: /tmp/2023-10-28-18-33-37/
loss_type: l2
optimizer: adam
trans_rep: tracknet
batch_size: 64
crop_ratio: 1.2
use_normal: false
BN_momentum: 0.1
max_num_key: null
warmup_step: -1
input_resize:

  • 160
  • 160
    max_step_val: 1000
    normal_uint8: false
    vis_interval: 1000
    weight_decay: 0
    n_max_objects: null
    normalize_xyz: true
    clip_grad_norm: 'Infinity'
    rot_normalizer: 0.3490658503988659
    trans_normalizer:
  • 0.019999999552965164
  • 0.019999999552965164
  • 0.05000000074505806
    max_step_per_epoch: 25000
    val_epoch_interval: 10
    n_dataloader_workers: 60
    enable_amp: true
    use_mask: false

[init()] self.h5_file:
[init()] Using pretrained model from /home/lms/Github/deep_learning_vision_methods/src/foundation_pose6d/learning/training/../../weights/2023-10-28-18-33-37/model_best.pth
[init()] init done
[reset_object()] self.diameter:0.19646325799497472, vox_size:0.009823162899748735
[reset_object()] self.pts:torch.Size([607, 3])
[reset_object()] reset done
[make_rotation_grid()] cam_in_obs:(42, 4, 4)
[make_rotation_grid()] rot_grid:(252, 4, 4)
Traceback (most recent call last):
File "/home/lms/Github/deep_learning_vision_methods/src/foundation_pose6d/run_demo.py", line 41, in
est = FoundationPose(model_pts=mesh.vertices, model_normals=mesh.vertex_normals, mesh=mesh, scorer=scorer, refiner=refiner, debug_dir=debug_dir, debug=debug, glctx=glctx)
File "/home/lms/Github/deep_learning_vision_methods/src/foundation_pose6d/estimater.py", line 27, in init
self.make_rotation_grid(min_n_views=40, inplane_step=60)
File "/home/lms/Github/deep_learning_vision_methods/src/foundation_pose6d/estimater.py", line 120, in make_rotation_grid
rot_grid = mycpp.cluster_poses(30, 99999, rot_grid, self.symmetry_tfs.data.cpu().numpy())
AttributeError: 'NoneType' object has no attribute 'cluster_poses'

@juwangvsu
Copy link

I have the same problem (4070), would you mind sharing your solution if you have solved the issue?

@juwangvsu
Copy link

never mind, find a solution at #89. clean rebuild mycpp after the 4090 hack

@MY-CODE-1981
Copy link

CMAKE_PREFIX_PATH=$CONDA_PREFIX/lib/python3.9/site-packages/pybind11/share/cmake/pybind11 bash build_all_conda.sh
After this procedure, a .so file will be created under mycpp/build. If its name is not mycpp.so, an error will occur when executing mycpp.cluster_poses in estimator.py.

The solution is simple: just rename the .so file to mycpp.so. In my case, the name was as follows, and changing it to mycpp.so resolved the issue:
mycpp.cpython-39-x86_64-linux-gnu.so

@Cheney-36
Copy link

My 40 series graphics card can run the following command without modifying the so file nameCMAKE_PREFIX_PATH=$CONDA_PREFIX/lib/python3.9/site-packages/pybind11/share/cmake/pybind11 bash build_all_conda.sh

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

4 participants