-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_celebahq.py
232 lines (182 loc) · 7.79 KB
/
model_celebahq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import torch
import torch.nn as nn
import functools
import numpy as np
import torch.nn.functional as F
import math
def get_weight(weight, gain=1, use_wscale=True, lrmul=1):
fan_in = np.prod(weight.size()[1:]) # [kernel, kernel, fmaps_in, fmaps_out] or [in, out]
he_std = gain / np.sqrt(fan_in) # He init
# Equalized learning rate and custom learning rate multiplier.
if use_wscale:
runtime_coef = he_std * lrmul
else:
runtime_coef = lrmul
return weight * runtime_coef
class Dense_layer(nn.Module):
def __init__(self, input_size, output_size, gain=1, use_wscale=True, lrmul=1):
super(Dense_layer, self).__init__()
self.weight = nn.Parameter(torch.Tensor(output_size, input_size))
self.bias = nn.Parameter(torch.Tensor(output_size))
self.gain = gain
self.use_wscale = use_wscale
self.lrmul = lrmul
nn.init.xavier_uniform_(self.weight)
nn.init.zeros_(self.bias)
def forward(self, x):
w = get_weight(self.weight, gain=self.gain, use_wscale=self.use_wscale, lrmul=self.lrmul)
b = self.bias
x = F.linear(x, w, bias=b)
return x
def apply_bias_act(x, act='linear', alpha=None, gain=None):
if act == 'linear':
return x
elif act == 'lrelu':
if alpha is None:
alpha = 0.2
if gain is None:
gain = np.sqrt(2)
x = F.leaky_relu(x, negative_slope=alpha)
x = x*gain
return x
class equalized_transform(nn.Module):
def __init__(self,dim,shortcut=False):
super(equalized_transform,self).__init__()
self.shortcut=shortcut
self.dense = nn.ModuleList()
#nn.Conv1d(dim, dim, 3, padding='same')
for layer_idx in range(18):
self.dense.append(Dense_layer(dim,dim))#nn.Linear(dim, dim))
def forward(self,inputs):
x = inputs.transpose(0,1)#18,N,512
out = []
for layer_idx in range(18):
out.append(apply_bias_act(self.dense[layer_idx](x[layer_idx]), act='linear'))
x = torch.stack(out, dim=1)
if self.shortcut:
x=x+inputs
return x
channel_multiplier=2
channels = {
4: 512,
8: 512,
16: 512,
32: 512,
64: 256 * channel_multiplier,
128: 128 * channel_multiplier,
256: 64 * channel_multiplier,
512: 32 * channel_multiplier,
1024: 16 * channel_multiplier,
}
import sys
sys.path.append('pixel2style2pixel/')
from pixel2style2pixel.models.stylegan2.model import ConvLayer,ResBlock,EqualLinear,Generator
from pixel2style2pixel.models.psp import get_keys
class build_d_backbone(nn.Module):
def __init__(self, size, channel_multiplier=2, blur_kernel=[1, 3, 3, 1]):
super().__init__()
convs = [ConvLayer(3, channels[size], 1)]
log_size = int(math.log(size, 2))
in_channel = channels[size]
for i in range(log_size, 2, -1):
out_channel = channels[2 ** (i - 1)]
convs.append(ResBlock(in_channel, out_channel, blur_kernel))
in_channel = out_channel
self.convs = nn.Sequential(*convs)
self.stddev_group = 4
self.stddev_feat = 1
self.final_conv = ConvLayer(in_channel + 1, channels[4], 3)
self.final_linear = nn.Sequential(
EqualLinear(channels[4] * 4 * 4, channels[4], activation='fused_lrelu')
)
def forward(self,input):
out = self.convs(input)
batch, channel, height, width = out.shape
group = min(batch, self.stddev_group)
stddev = out.view(
group, -1, self.stddev_feat, channel // self.stddev_feat, height, width
)
stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8)
stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2)
stddev = stddev.repeat(group, 1, height, width)
out = torch.cat([out, stddev], 1)
out = self.final_conv(out)
out = out.view(batch, -1)
out = self.final_linear(out)
return out
def build_score_map():
h=EqualLinear(channels[4], 1)
return h
class build_classifier(nn.Module):
def __init__(self):
super(build_classifier,self).__init__()
self.net=nn.Sequential(
EqualLinear(channels[4], channels[4]//2, activation='fused_lrelu'),
EqualLinear(channels[4]//2, 21),
)
def forward(self,x):
x=self.net(x)
return x
class build_encoder_classifier(nn.Module):
def __init__(self):
super(build_encoder_classifier,self).__init__()
self.net=nn.Sequential(
EqualLinear(channels[4], channels[4]//2, activation='fused_lrelu'),
EqualLinear(channels[4]//2, 21),
)
def forward(self,x):
x=self.net(x.mean(dim=1))
return x
class Encoder(nn.Module):
def __init__(self,ngf=16,num_classes=[17,4]):
super(Encoder,self).__init__()
self.num_classes=num_classes
self.filter=equalized_transform(channels[4])
self.classifier=build_encoder_classifier()
self.embeds=nn.Embedding(sum(num_classes),128,max_norm=100)#64
self.fc=Dense_layer(128,18*512*2)#64
def forward(self,inputs,attrs,coef=0,mask=None):
attr_real_logits=self.classifier(inputs)
z=self.filter(inputs)
attr_fake_logits=self.classifier(z)
fc_weight=get_weight(self.fc.weight, gain=self.fc.gain, use_wscale=self.fc.use_wscale, lrmul=self.fc.lrmul)
cur_index=0
attr_feats=[]
dic=self.embeds.weight.clone()
for i in range(len(self.num_classes)):
index=cur_index+attrs[:,i]
attr_i=dic[index]#F.linear(dic[index],fc_weight,bias=self.fc.bias/8.0)#
"""if i==5:
attr_i_wo=F.linear(dic[index-1],fc_weight,bias=self.fc.bias/8.0)
attr_i=attr_i*coef+attr_i_wo*(1.0-coef)
if i==7:
attr_i_wo=F.linear(dic[index-1],fc_weight,bias=self.fc.bias/8.0)
attr_i=attr_i*(1.0-coef)+attr_i_wo*coef"""
attr_feats.append(attr_i)
cur_index=cur_index+self.num_classes[i]
attr_feats=torch.stack(attr_feats,dim=0).sum(dim=0)
attr_feats=self.fc(attr_feats).view(-1,18,512*2)#attr_feats.view(-1,18,512*2) #
mean,std=torch.chunk(attr_feats, chunks=2, dim=2)
z=(1+std)*z+mean
return z,attr_real_logits,attr_fake_logits
class MyGenerator(nn.Module):
def __init__(self,ngf=16,num_classes=[17,4]):
super(MyGenerator,self).__init__()
self.networkG= Generator(1024, 512, 8)
def forward(self,z):
nimgs, _ = self.networkG([z], input_is_latent=True, randomize_noise=False)
return nimgs
def init_generator(self):
state_dict = torch.load('pixel2style2pixel/pretrained_models/psp_ffhq_encode.pt', map_location='cpu')
self.networkG.load_state_dict(get_keys(state_dict, 'decoder'), strict=True)
class Discriminator(nn.Module):
def __init__(self,ngf=16,num_classes=[17,4]):
super(Discriminator,self).__init__()
self.networkD_backbone=build_d_backbone(1024)
self.build_score_map=build_score_map()
self.networkD_classifier=build_classifier()
def forward(self,imgs,att_masks=None):
backbone=self.networkD_backbone(imgs)
score_map=self.build_score_map(backbone)
logits=self.networkD_classifier(backbone)
return score_map,logits