-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
382 lines (317 loc) · 16.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
import torch
import numpy as np
from torch.utils.data import DataLoader
from PIL import Image
import torch.nn.functional as F
import torch.autograd as autograd
import matplotlib.pyplot as plt
import torchvision
import argparse
import os
#options: synthesis, attr, celeba, celebahq
DATASET='celebahq'
#deepfashion synthesis
if DATASET=='synthesis':
from model_synthesis import *
from dataloader_synthesis import Dataset
parser = argparse.ArgumentParser(description='PyTorch Training')
parser.add_argument('--l1', '--lambda1', default=0.25, type=float, help='lambda for disentanglement')
parser.add_argument('--l2', '--lambda2', default=0.125, type=float, help='lambda for image attribute')
parser.add_argument('--l3', '--lambda3', default=1.0, type=float, help='lambda for reconstruction')
parser.add_argument('--l4', '--lambda4', default=1.0, type=float, help='lambda for perceptual loss')
parser.add_argument('--lr', '--learning rate', default=1e-4, type=float, help='learning rate')
parser.add_argument('--beta1', '--beta1', default=0.5, type=float, help='beta1 in Adam')
parser.add_argument('--resume_training', '--resume_training', default=False, type=bool, help='use pretrained model or not')
save_dir='pretrain/synthesis/'
classifier_path='classifier/model_synthesis.pth'
NUM_CLASSES=[17,4]
NUM_EPOCH=31
batch_size=16
#deepfashion finegrained attribute
elif DATASET=='attr':
from model_attr import *
from dataloader_attr import Dataset
parser = argparse.ArgumentParser(description='PyTorch Training')
parser.add_argument('--l1', '--lambda1', default=0.05, type=float, help='lambda for disentanglement')
parser.add_argument('--l2', '--lambda2', default=0.125, type=float, help='lambda for image attribute')
parser.add_argument('--l3', '--lambda3', default=2.0, type=float, help='lambda for reconstruction')
parser.add_argument('--l4', '--lambda4', default=1.0, type=float, help='lambda for perceptual loss')
parser.add_argument('--lr', '--learning rate', default=1e-4, type=float, help='learning rate')
parser.add_argument('--beta1', '--beta1', default=0.5, type=float, help='beta1 in Adam')
parser.add_argument('--resume_training', '--resume_training', default=False, type=bool, help='use pretrained model or not')
save_dir='pretrain/attr/'
classifier_path='classifier/model_attr.pth'
NUM_CLASSES=[7,3,3,4,6,3]
NUM_EPOCH=51
batch_size=16
#celeba
elif DATASET=='celeba':
from model_celeba import *
from dataloader_celeba import Dataset
parser = argparse.ArgumentParser(description='PyTorch Training')
parser.add_argument('--l1', '--lambda1', default=0.5, type=float, help='lambda for disentanglement')
parser.add_argument('--l2', '--lambda2', default=0.5, type=float, help='lambda for image attribute')
parser.add_argument('--l3', '--lambda3', default=1.0, type=float, help='lambda for reconstruction')
parser.add_argument('--l4', '--lambda4', default=1.0, type=float, help='lambda for perceptual loss')
parser.add_argument('--lr', '--learning rate', default=1e-4, type=float, help='learning rate')
parser.add_argument('--beta1', '--beta1', default=0.5, type=float, help='beta1 in Adam')
parser.add_argument('--resume_training', '--resume_training', default=False, type=bool, help='use pretrained model or not')
save_dir='pretrain/celeba/'
classifier_path='classifier/model_celeba.pth'
NUM_CLASSES=[5,3,3,2,2,2,2,2]
NUM_EPOCH=21
batch_size=16
#celebahq
elif DATASET=='celebahq':
from model_celebahq import *
from dataloader_celebahq import Dataset
parser = argparse.ArgumentParser(description='PyTorch Training')
parser.add_argument('--l1', '--lambda1', default=0.25, type=float, help='lambda for disentanglement')
parser.add_argument('--l2', '--lambda2', default=0.125, type=float, help='lambda for image attribute')
parser.add_argument('--l3', '--lambda3', default=20.0, type=float, help='lambda for reconstruction')
parser.add_argument('--l4', '--lambda4', default=10.0, type=float, help='lambda for perceptual loss')
parser.add_argument('--lr', '--learning rate', default=1e-3, type=float, help='learning rate')
parser.add_argument('--beta1', '--beta1', default=0.9, type=float, help='beta1 in Adam')
parser.add_argument('--resume_training', '--resume_training', default=False, type=bool, help='use pretrained model or not')
save_dir='pretrain/celebahq/'
NUM_CLASSES=[5,3,3,2,2,2,2,2]
NUM_EPOCH=11
batch_size=4
else:
print('Undefined dataset!')
args = parser.parse_args()
if not os.path.exists(save_dir):
os.mkdir(save_dir)
print("==============================")
print("lambda1={},lambda2={},lambda3={},lambda4={}".format(args.l1,args.l2,args.l3,args.l4))
print("==============================")
start_epoch=0
MSELoss=torch.nn.MSELoss(reduction='mean')
SCELoss=nn.CrossEntropyLoss(reduction='mean')
logsoftmax=nn.LogSoftmax(dim=1)
# we don't need a classifier for the perceptual loss in celebahq
if DATASET!='celebahq':
cnn= torchvision.models.resnet50(pretrained=True)
cnn.fc=nn.Linear(2048, sum(NUM_CLASSES))
cnn=cnn.to(torch.device('cuda'))
checkpoint = torch.load(classifier_path)
cnn.load_state_dict(checkpoint['model_state_dict'])
params = list(cnn.parameters())
for param in params:
param.requires_grad = False
weight = params[-2]
cnn = nn.Sequential(*list(cnn.children())[:-1])
def save_img_from_torch(img,imgname,imgfolder='output/'):
img=np.clip((img+1)/2.0,0,1)
img=np.transpose(img,[1,2,0])
name=imgname.replace('.jpg','.png')
nimg=Image.fromarray(np.uint8(img*255))
nimg.save(os.path.join(imgfolder,name))
def get_attr_loss(logits,labels):
cur_index=0
attr_loss=0
for i in range(len(NUM_CLASSES)):
attr_loss+=SCELoss(logits[:,cur_index:cur_index+NUM_CLASSES[i]],labels[:,i])
cur_index+=NUM_CLASSES[i]
return attr_loss
def get_disetg_loss(logits,labels):
cur_index=0
attr_loss=0
for i in range(len(NUM_CLASSES)):
alogits=logits[:,cur_index:cur_index+NUM_CLASSES[i]]
aloss,_=torch.max(F.log_softmax(alogits,dim=1),1)
aloss=torch.maximum(aloss-torch.log(torch.ones_like(aloss)/NUM_CLASSES[i]),1e-2*torch.ones_like(aloss))
attr_loss+=aloss.mean()
cur_index+=NUM_CLASSES[i]
return attr_loss
def adv_train(epoch,device,encoder,generator,discriminator,dataloader,optimizerE,optimizerG,optimizerD,paramsE,paramsG,paramsD):
print("=======adv_train=========")
encoder.train()
generator.train()
discriminator.train()
total_loss_dis=0
total_loss_gen=0
total_loss=0
for ibatch,(imgs,attrs,name,paired_attrs,face_seg,paired_imgs,mask) in enumerate(dataloader): #,attrs_onehot,paired_attrs_onehot
loss_dict={}
for par in paramsD:
par.requires_grad=False
for par in paramsG+paramsE:
par.requires_grad=True
optimizerE.zero_grad()
optimizerG.zero_grad()
mask=mask.to(device)
if DATASET=='celebahq':
z,attr_logits_real,attr_logits_fake=encoder(paired_imgs.to(device),attrs.to(device),mask=mask)
else:
z,attr_logits_real,attr_logits_fake=encoder(imgs.to(device),attrs.to(device),mask=mask)
gen_x=generator(z)
# for fashion datasets, directly copy the face
gen_x=gen_x*(1-face_seg.to(device))+imgs.to(device)*face_seg.to(device)
dis_gen_x,gen_logits= discriminator(gen_x)
rec_loss=args.l3*torch.abs(gen_x-imgs.to(device)).mean()
loss_dict['rec_loss']=rec_loss.cpu().item()
if DATASET=='celebahq':
z_prime,attr_logits_real,attr_logits_fake=encoder(paired_imgs.to(device),paired_attrs.to(device),mask=mask)
else:
z_prime,attr_logits_real,attr_logits_fake=encoder(imgs.to(device),paired_attrs.to(device),mask=mask)
gen_x_prime=generator(z_prime)
# for fashion datasets, directly copy the face
gen_x_prime=gen_x_prime*(1-face_seg.to(device))+imgs.to(device)*face_seg.to(device)
dis_gen_x_prime,gen_logits_prime= discriminator( gen_x_prime)
G_cost=0.5*(torch.square(1-dis_gen_x_prime)).mean()+0.5*(torch.square(1-dis_gen_x)).mean()
loss_dict['generator']=G_cost.cpu().item()
attr_loss=args.l2*(get_attr_loss(gen_logits_prime,paired_attrs.to(device))+get_attr_loss(gen_logits,attrs.to(device)))
loss_dict['attr_fake']=attr_loss.cpu().item()
if DATASET=='celebahq':
p_loss=args.l4*(z-paired_imgs.to(device)).norm()/sum(list(z.size()))+args.l4*(z_prime-paired_imgs.to(device)).norm()/sum(list(z.size()))
else:
p_loss=args.l4*torch.abs(cnn(gen_x_prime)-cnn(paired_imgs.to(device))).mean()+torch.abs(cnn(gen_x)-cnn(imgs.to(device))).mean()
loss_dict['p_loss']=p_loss.cpu().item()
disetg_loss=get_disetg_loss(attr_logits_real,attrs.to(device))+get_disetg_loss(attr_logits_fake,attrs.to(device))
disetg_loss=args.l1*disetg_loss
loss_dict['disetg']=disetg_loss
(G_cost+rec_loss+attr_loss+info_loss+p_loss).backward()
optimizerE.step()
optimizerG.step()
total_loss_gen+=G_cost.cpu().item()
#=============discriminator=============
for par in paramsG+paramsE:
par.requires_grad=False
for par in paramsD:
par.requires_grad=True
optimizerD.zero_grad()
dis_x_raw,real_logits= discriminator(imgs.to(device))
dis_x_raw=torch.square(dis_x_raw-1.0)
dis_x = dis_x_raw.mean()
gen_x=gen_x.detach()
dis_gen_x,_= discriminator(gen_x)
dis_gen_x=torch.square(dis_gen_x)
dis_gen_x = dis_gen_x.mean()
gen_x_prime=gen_x_prime.detach()
dis_gen_x_prime,_= discriminator( gen_x_prime)
dis_gen_x_prime=torch.square(dis_gen_x_prime)
dis_gen_x_prime =dis_gen_x_prime.mean()
D_cost =0.5*(dis_gen_x+dis_gen_x_prime)+ dis_x
loss_dict['discriminator']=D_cost.cpu().item()
attr_loss=2*args.l2*get_attr_loss(real_logits,attrs.to(device))
loss_dict['attr_real']=attr_loss.cpu().item()
(D_cost+attr_loss).backward()
optimizerD.step()
total_loss_dis+=D_cost.cpu().item()
loss_i=sum([v for v in loss_dict.values()])
total_loss+=loss_i
if ibatch%100==0:
print('total loss=%.3f at img %d epoch %d'%(total_loss/(ibatch+1),(ibatch+1)*batch_size,epoch))
print('\tG loss=%.3f, D loss=%.3f'%(total_loss_gen/(ibatch+1),total_loss_dis/(ibatch+1)))
loss={k:v for k,v in loss_dict.items()}
for k,v in loss.items():
print('\t%s=%.3f'%(k,v))
def test(device,encoder,generator,discriminator,dataloader,imgfolder='output/'):
print("=======test=========")
encoder.eval()
generator.eval()
discriminator.eval()
total_loss=0.0
loss_dict={}
for ibatch,(imgs,attrs,imgname,paired_attrs,face_seg,paired_imgs,mask) in enumerate(dataloader):
with torch.no_grad():
mask=mask.to(device)
if DATASET=='celebahq':
z,_,_=encoder((paired_imgs).to(device),paired_attrs.to(device),mask=mask)
else:
z,_,_=encoder((imgs).to(device),paired_attrs.to(device),mask=mask)
gen_x=generator(z)
gen_x=gen_x*(1-face_seg.to(device))+imgs.to(device)*face_seg.to(device)
loss_dict['rec_loss']=MSELoss(gen_x,imgs.to(device))
total_loss+=sum([v.mean() for v in loss_dict.values()])
if ibatch%50==0:
index=np.random.choice(np.arange(len(gen_x)),15)
for ii in index:
compare=np.concatenate((imgs[ii].cpu().numpy(),gen_x[ii].detach().cpu().numpy()),axis=2)
save_img_from_torch(compare,imgname[ii],imgfolder=imgfolder)
loss={k:v.cpu().detach().numpy() for k,v in loss_dict.items()}
print('total loss=%.2f at img %d'%(total_loss/(ibatch+1),ibatch+1))
for k,v in loss.items():
print('\t%s=%.2f'%(k,np.mean(v)))
def manipulate(device,encoder,generator,discriminator,dataloader,imgfolder='output/'):
print("=======manip=========")
encoder.eval()
generator.eval()
discriminator.eval()
total_loss=0.0
loss_dict={}
plt.figure()
for ibatch,(imgs,attrs,imgnames,paired_attrs,face_seg,paired_imgs,mask) in enumerate(dataloader):
with torch.no_grad():
#specify the manipulated attribute here
attrs[:,1]=0
mask=mask.to(device)
if DATASET=='celebahq':
z,_,_=encoder((paired_imgs).to(device),attrs.to(device),mask=mask)
else:
z,_,_=encoder((imgs).to(device),attrs.to(device),mask=mask)
gen_x=generator(z)
gen_x=gen_x*(1-face_seg.to(device))+imgs.to(device)*face_seg.to(device)
loss_dict['rec_loss']=MSELoss(gen_x,imgs.to(device))
total_loss+=sum([v.mean() for v in loss_dict.values()])
if ibatch%50==0:
index=np.arange(len(gen_x))
for ii in index:
compare=np.concatenate((imgs[ii].cpu().numpy(),gen_x[ii].detach().cpu().numpy()),axis=2)
save_img_from_torch(compare,imgnames[ii],imgfolder=imgfolder)
loss={k:v.cpu().detach().numpy() for k,v in loss_dict.items()}
print('total loss=%.2f at img %d'%(total_loss/(ibatch+1),ibatch+1))
for k,v in loss.items():
print('\t%s=%.2f'%(k,np.mean(v)))
train_data=Dataset(split='train')
val_data=Dataset(split='val')
train_dataloader = DataLoader(train_data, batch_size=batch_size, shuffle=True)
val_dataloader = DataLoader(val_data, batch_size=batch_size, shuffle=False)
device = torch.device('cuda')
encoder=Encoder(ngf=32, num_classes=NUM_CLASSES)
encoder.to(device)
if DATASET=='celebahq':
generator=MyGenerator(ngf=32)
generator.to(device)
generator.init_generator()
else:
generator=Generator(ngf=32)
generator.to(device)
discriminator=Discriminator(ngf=32, num_classes=NUM_CLASSES)
discriminator.to(device)
enc_params=[par for par in encoder.parameters()]
gen_params=[par for par in generator.parameters()]
dis_params=[par for par in discriminator.parameters()]
optimizerE=torch.optim.Adam(enc_params,lr=args.lr, betas=(args.beta1, 0.999))
optimizerG=torch.optim.Adam(gen_params,lr=args.lr, betas=(args.beta1, 0.999))
optimizerD=torch.optim.Adam(dis_params,lr=args.lr, betas=(args.beta1, 0.999))
print('rough number of parameters:',len(enc_params),len(gen_params),len(dis_params))
if args.resume_training:
checkpoint = torch.load(os.path.join(save_dir,'model.pth'))
encoder.load_state_dict(checkpoint['encoder_state_dict'])
generator.load_state_dict(checkpoint['generator_state_dict'])
discriminator.load_state_dict(checkpoint['discriminator_state_dict'])
optimizerD.load_state_dict(checkpoint['decoder_optimizer_state_dict'])
optimizerE.load_state_dict(checkpoint['encoder_optimizer_state_dict'])
optimizerG.load_state_dict(checkpoint['generator_optimizer_state_dict'])
start_epoch=checkpoint['epoch']+1
batch_size=checkpoint['batch_size']
#test(device,encoder,generator,discriminator,val_dataloader,imgfolder='celeb/')
#if args.resume_training:
# manipulate(device,encoder,generator,discriminator,val_dataloader,imgfolder='manip/')
# assert 1==0
for e in range(start_epoch,NUM_EPOCH):
param_dict={'epoch':e, 'batch_size':batch_size,
'discriminator_state_dict':discriminator.state_dict(),
'encoder_state_dict':encoder.state_dict(),
'generator_state_dict':generator.state_dict(),
'encoder_optimizer_state_dict':optimizerE.state_dict(),
'generator_optimizer_state_dict':optimizerG.state_dict(),
'decoder_optimizer_state_dict':optimizerD.state_dict()
}
adv_train(e,device,encoder,generator,discriminator,train_dataloader,optimizerE,optimizerG,optimizerD,enc_params,gen_params,dis_params)
if e%5==0:
torch.save(param_dict,os.path.join(save_dir,'model_%d.pth'%(e)))
torch.save(param_dict,os.path.join(save_dir,'model.pth'%(e)))
test(device,encoder,generator,discriminator,val_dataloader,imgfolder=save_dir)