-
Notifications
You must be signed in to change notification settings - Fork 64
/
Copy pathVarNames.jl
486 lines (387 loc) · 16.9 KB
/
VarNames.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
import MacroTools as MT
@assert Symbol <: VarName
const VarNames = Union{
AbstractArray{<:VarName},
Pair{<:VarName},
}
req(cond, msg) = cond || throw(ArgumentError(msg))
@doc raw"""
variable_names(a...) -> Vector{Symbol}
variable_names(a::Tuple) -> Vector{Symbol}
Create a vector of variable names from a variable name specification.
Each argument can be either an Array of `VarName`s,
or of the form `s::VarName => iter`, or of the form `s::VarName => (iter...)`.
Here `iter` is supposed to be any iterable, typically a range like `1:5`.
The `:s => iter` specification is shorthand for `["s[$i]" for i in iter]`.
Similarly `:s => (iter1, iter2)` is shorthand for `["s[$i,$j]" for i in iter1, j in iter2]`,
and likewise for three and more iterables.
As an alternative `"s#" => iter` is shorthand for `["s$i" for i in iter]`.
This also works for multiple iterators in that`"s#" => (iter1, iter2)`
is shorthand for `["s$i$j" for i in iter1, j in iter2]`.
# Examples
```jldoctest; setup = :(using AbstractAlgebra)
julia> AbstractAlgebra.variable_names([:x, :y])
2-element Vector{Symbol}:
:x
:y
julia> AbstractAlgebra.variable_names(:x => (0:0, 0:1), :y => 0:1, [:z])
5-element Vector{Symbol}:
Symbol("x[0, 0]")
Symbol("x[0, 1]")
Symbol("y[0]")
Symbol("y[1]")
:z
julia> AbstractAlgebra.variable_names("x#" => (0:0, 0:1), "y#" => 0:1)
4-element Vector{Symbol}:
:x00
:x01
:y0
:y1
julia> AbstractAlgebra.variable_names("x#" => 9:11)
3-element Vector{Symbol}:
:x9
:x10
:x11
julia> AbstractAlgebra.variable_names(["x$i$i" for i in 1:3])
3-element Vector{Symbol}:
:x11
:x22
:x33
julia> AbstractAlgebra.variable_names('a':'c', ['z'])
4-element Vector{Symbol}:
:a
:b
:c
:z
```
"""
variable_names(as::VarNames...) = variable_names(as)
# brackets = Val(false) effectively replaces `:x` and `"x"` by `"x#"`, used by macro
variable_names(as::Tuple{Vararg{VarNames}}, brackets::Val = Val(true)) =
Symbol[x for a in as for x in _variable_names(a, brackets)]
_variable_names(a::AbstractArray{<:VarName}, ::Any) = Symbol.(a)
_variable_names((s, axe)::Pair{<:Union{Char, Symbol}}, ::Val{true}) = Symbol.(s, '[', axe, ']')
_variable_names((s, axe)::Pair{<:Union{Char, Symbol}}, ::Val{false}) = check_names(Symbol.(s, axe))
_variable_names((s, axes)::Pair{<:Union{Char, Symbol}, <:Tuple}, ::Val{true}) = Symbol.(s, '[', join.(Iterators.product(axes...), ", "), ']')
_variable_names((s, axes)::Pair{<:Union{Char, Symbol}, <:Tuple}, ::Val{false}) = check_names(Symbol.(s, join.(Iterators.product(axes...))))
_variable_names((s, axe)::Pair{<:AbstractString}, val::Val) = _variable_names(s => (axe,), val)
function _variable_names((s, axes)::Pair{<:AbstractString, <:Tuple}, val::Val)
c = count("#", s)
req(c <= 1, """Only a single '#' allowed, but "$s" contains $c of them.
Please communicate your use case to the Oscar community.""")
return c == 0 ? _variable_names(Symbol(s) => axes, val) :
_check_names([Symbol(replace(s, '#' => join(i))) for i in Iterators.product(axes...)], val)
end
"""
check_names(names) -> names
Warn, if any of the `names` is no valid Julia identifier. Return `names`.
"""
function check_names(names)
badname = _first(!Meta.isidentifier, names)
if badname !== nothing
badname = first(x for x in names if !Meta.isidentifier(x))
badstring = repr(string(badname))
@warn "The variable name $badstring sadly is no Julia identifier. " *
"You can still access it as `var$badstring`."
end
return names
end
_check_names(x, ::Val{true}) = x
_check_names(x, ::Val{false}) = check_names(x)
function _first(f, a)
i = iterate(Iterators.filter(f, a))
return i === nothing ? nothing : first(i)
end
@doc raw"""
reshape_to_varnames(vec::Vector{T}, varnames...) :: Tuple{Array{<:Any, T}}
reshape_to_varnames(vec::Vector{T}, varnames::Tuple) :: Tuple{Array{<:Any, T}}
Turn `vec` into the shape of `varnames`. Reverse flattening from [`variable_names`](@ref).
# Examples
```jldoctest; setup = :(using AbstractAlgebra)
julia> s = ([:a, :b], "x#" => (1:1, 1:2), "y#" => 1:2, [:z]);
julia> AbstractAlgebra.reshape_to_varnames(AbstractAlgebra.variable_names(s...), s...)
([:a, :b], [:x11 :x12], [:y1, :y2], [:z])
julia> R, v = polynomial_ring(ZZ, AbstractAlgebra.variable_names(s...))
(Multivariate polynomial ring in 7 variables over integers, AbstractAlgebra.Generic.MPoly{BigInt}[a, b, x11, x12, y1, y2, z])
julia> (a, b), x, y, z = AbstractAlgebra.reshape_to_varnames(v, s...)
(AbstractAlgebra.Generic.MPoly{BigInt}[a, b], AbstractAlgebra.Generic.MPoly{BigInt}[x11 x12], AbstractAlgebra.Generic.MPoly{BigInt}[y1, y2], AbstractAlgebra.Generic.MPoly{BigInt}[z])
julia> R, (a, b), x, y, z = polynomial_ring(ZZ, s...)
(Multivariate polynomial ring in 7 variables over integers, AbstractAlgebra.Generic.MPoly{BigInt}[a, b], AbstractAlgebra.Generic.MPoly{BigInt}[x11 x12], AbstractAlgebra.Generic.MPoly{BigInt}[y1, y2], AbstractAlgebra.Generic.MPoly{BigInt}[z])
```
"""
reshape_to_varnames(vec::Vector, varnames::VarNames...) =
reshape_to_varnames(vec, varnames)
function reshape_to_varnames(vec::Vector, varnames::Tuple{Vararg{VarNames}})
iter = Iterators.Stateful(vec)
result = _unpeel_reshape_to_varnames(iter, varnames)
@assert isempty(iter)
return result
end
function _unpeel_reshape_to_varnames(iter, x::Tuple)
if length(x) === 1
return (_reshape_to_varnames(iter, x[1]), )
else
return tuple(_reshape_to_varnames(iter, x[1]), _unpeel_reshape_to_varnames(iter, Base.tail(x))...)
end
end
_reshape_to_varnames(iter::Iterators.Stateful, a::AbstractArray{<:VarName}) =
_reshape(iter, size(a))
_reshape_to_varnames(iter::Iterators.Stateful, (_, shape)::Pair{<:VarName}) =
__reshape(iter, shape)
__reshape(iter, axes::Tuple) = _reshape(iter, ntuple(i -> size(axes[i])[1], length(axes)))
__reshape(iter, axe) = _reshape(iter, size(axe))
_reshape(iter, dims) = reshape(collect(Iterators.take(iter, prod(dims))), Tuple(dims))
"""
keyword_arguments((kvs::Expr...), default::Dict, [valid::Dict]) :: Dict
Mimic usual keyword arguments for usage in macros.
* `kvs`: tuple of Expr of form :(k = v)
* `default`: dictionary providing the allowed keys and their default values
* `valid`: optional `Dict{Symbol, <:AbstractVector}` constraining the valid values for some keys
Return a copy of `default` with the key value pairs from `kvs` applied.
# Example
```jldoctest; setup = :(using AbstractAlgebra)
julia> AbstractAlgebra.keyword_arguments((:(a=1), :(b=:yes)),
Dict(:a=>0, :b=>:no, :c=>0),
Dict(:b => [:(:yes), :(:no)]))
Dict{Symbol, Any} with 3 entries:
:a => 1
:b => :(:yes)
:c => 0
```
"""
function keyword_arguments(kvs::Tuple{Vararg{Expr}}, default::Dict{Symbol},
valid::Dict{Symbol, <:AbstractVector} = Dict{Symbol, Vector{Any}}()) ::
Dict{Symbol}
result = Dict{Symbol, Any}(default)
for o in kvs
req(MT.@capture(o, k_ = v_), "Only key value options allowed")
req(k in keys(result), "Invalid key value option key `$k`")
k in keys(valid) && req(v in valid[k], "Invalid option `$v` to key `$k`")
result[k] = v
end
return result
end
raw"""
normalise_keyword_arguments(args::Union{Tuple, Vector}) :: Vector
Turn argument list like `(1, a=2; b=3).args` into `(1; a=2, b=3).args`.
Intended to let a macro call `@m(1, a=2; b=3)` mimic a usual function call.
```jldoctest; setup = :(using AbstractAlgebra)
julia> args = AbstractAlgebra.normalise_keyword_arguments(:(1, a=2; b=3).args); :($(args...),)
:((1; a = 2, b = 3))
julia> macro nka_test(args...) AbstractAlgebra.normalise_keyword_arguments(args) end
@nka_test (macro with 1 method)
julia> args = @nka_test(1, a=2; b=3); :($(args...),)
:((1; a = 2, b = 3))
julia> args = @nka_test(1+2, a=x; b=x^2, kw...); :($(args...),)
:((1 + 2; a = x, b = x^2, kw...))
```
"""
function normalise_keyword_arguments(args)
# Keyword arguments after `;`
if Meta.isexpr(first(args), :parameters)
kv = first(args)
args = args[2:end]
else
kv = Expr(:parameters)
end
# Keyword arguments without previous `;`
append!(kv.args, (Expr(:kw, e.args...) for e in args if Meta.isexpr(e, :(=))))
# normal arguments
args = (e for e in args if !Meta.isexpr(e, :(=)))
return [kv, args...]
end
function _eval(m::Core.Module, e::Expr)
try
Base.eval(m, e)
catch err
if isa(err, UndefVarError)
@error "Inconveniently, you may only use literals and variables " *
"from the global scope of the current module (`$m`) " *
"when using variable name constructor macros"
end
rethrow()
end
end
# input is :([M.]f(args..., s) where {wheres} [ = ... ])
function _splitdef(e::Expr)
Meta.isexpr(e, (:(=), :function)) || (e = Expr(:(=), e, :()))
d = MT.splitdef(e)
req(isempty(d[:kwargs]), "Keyword arguments currently not supported")
args = d[:args][begin:end-1] # the last argument is just a placeholder
splitargs = MT.splitarg.(args)
req(all(((_, _, slurp, default),) -> (slurp, default) === (false, nothing), splitargs),
"Default and slurp arguments currently not supported")
argnames = first.(splitargs)
req(all(!isnothing, argnames), "Nameless arguments currently not supported")
base_f = d[:name]
return Dict{Symbol, Any}(
:base_f => esc(base_f),
:f => esc(unqualified_name(base_f)),
:wheres => esc.(d[:whereparams]),
:args => esc.(args),
:argnames => esc.(argnames),
:argtypes => (esc(a[2]) for a in splitargs),
)
end
unqualified_name(name::Symbol) = name
unqualified_name(name::QuoteNode) = name.value
function unqualified_name(name::Expr)
req(Meta.isexpr(name, :., 2), "Expected a binding, but `$name` given")
unqualified_name(name.args[2])
end
function base_method(d::Dict{Symbol},
@nospecialize s_type::Union{Symbol, Expr})
f, base_f, wheres = d[:f], d[:base_f], d[:wheres]
if f == base_f
argtypes = :(Tuple{$(d[:argtypes]...), $s_type} where {$(wheres...)})
:(req(hasmethod($f, $argtypes),
"base method of `$($f)` for $($argtypes) missing"))
else
:($f($(d[:args]...), s::$s_type; kv...) where {$(wheres...)} =
$base_f($(d[:argnames]...), s; kv...))
end
end
function varnames_method(d::Dict{Symbol})
f, args, argnames, wheres = d[:f], d[:args], d[:argnames], d[:wheres]
quote
$f($(args...), s1::VarNames, s::VarNames...; kv...) where {$(wheres...)} =
$f($(argnames...), (s1, s...); kv...)
function $f($(args...), s::Tuple{Vararg{VarNames}}; kv...) where {$(wheres...)}
X, gens = $f($(argnames...), variable_names(s...); kv...)
return X, reshape_to_varnames(gens, s...)...
end
end
end
function n_vars_method(d::Dict{Symbol}, n, range)
f, args, argnames, wheres = d[:f], d[:args], d[:argnames], d[:wheres]
n === :(:no) && return :()
req(n isa Symbol, "Value to option `n` must be `:no` or " *
"an alternative name like `m`, not `$n`")
quote
$f($(args...), $n::Int, s::VarName=:x; kv...) where {$(wheres...)} =
$f($(argnames...), Symbol.(s, $range); kv...)
end
end
function varnames_macro(f, args_count, opt_in, n, range)
opt_in === :(:yes) || return :()
quote
macro $f(args...)
args = normalise_keyword_arguments(args)
req(length(args) >= $args_count+2, "Not enough arguments")
base_args = args[1:$args_count+1] # includes keyword arguments
m = VERSION > v"9999" ? __module__ : $(esc(:__module__)) # julia issue #51602
s = _eval(m, :($$_varnames_macro($(args[$args_count+2:end]...))))
$(_n_vars_macro_support(n, range))
varnames_macro_code($f, esc.(base_args), s)
end
end
end
_varnames_macro(arg::VarName) = Symbol(arg)
_varnames_macro(args::VarNames...) = variable_names(args, Val(false))
_varnames_macro(n::Int, s::VarName=:x) = (n, Symbol(s)) # defer work to `_n_vars_macro_support` outside `eval`
function _n_vars_macro_support(n, range)
if n == :(:no)
return :(s isa Tuple{Int, Symbol} && throw(ArgumentError("`Int` argument variant not supported")))
else
return quote
if s isa Tuple{Int, Symbol}
$n = s[1]
s = Symbol.(s[2], $range)
end
end
end
end
function varnames_macro_code(f, args, s::Symbol)
quote
X, $(esc(s)) = $f($(args...), $(QuoteNode(s)))
X
end
end
function varnames_macro_code(f, args, s::Vector{Symbol})
quote
X, ($(esc.(s)...),) = $f($(args...), $s)
X
end
end
@doc raw"""
@varnames_interface [M.]f(args..., varnames) macros=:yes n=n range=1:n
Add methods `X, vars = f(args..., varnames...)` and macro `X = @f(args..., varnames...`) to current scope.
# Created methods
X, gens::Vector{T} = f(args..., varnames::Vector{Symbol})
Base method, called by everything else defined below. If a module `M` is
specified, this is implemented as a call to `M.f`. Otherwise, a method `f` with
this signature must already exist.
---
X, gens... = f(args..., varnames...; kv...)
X, gens... = f(args..., varnames::Tuple; kv...)
Compute `X` and `gens` via the base method. Then reshape `gens` into the shape defined by `varnames` according to [`variable_names`](@ref).
The vararg `varnames...` method needs at least one argument to avoid confusion.
Moreover a single `VarName` argument will be dispatched to use a univariate method of `f` if it exists (e.g. `polynomial_ring(R, :x)`).
If you need those cases, use the `Tuple` method.
Keyword arguments are passed on to the base method.
---
X, x::Vector{T} = f(args..., n::Int, s::VarName = :x; kv...)
Shorthand for `X, x = f(args..., "$s#" => 1:n; kv...)`.
The name of the argument `n` can be changed via the `n` option. The range `1:n` is given via the `range` option.
Setting `n=:no` disables creation of this method.
---
X = @f(args..., varnames...; kv...)
X = @f(args..., varnames::Tuple; kv...)
X = @f(args..., n::Int, s::VarName = :x; kv...)
X = @f(args..., varname::VarName; kv...)
These macros behave like their `f(args..., varnames; kv...)` counterparts but also introduce the indexed `varnames` into the current scope.
The first version needs at least one `varnames` argument to avoid confusion.
The last version calls the univariate base method if it exists (e.g. `polynomial_ring(R, varname)`).
Setting `macros=:no` disables macro creation.
!!! warning
Turning `varnames` into a vector of symbols happens by evaluating `variable_names(varnames)` in the global scope of the current module.
For interactive usage in the REPL this is fine, but in general you have no access to local variables and should not use any side effects in `varnames`.
# Examples
```jldoctest; setup = :(using AbstractAlgebra)
julia> f(a, s::Vector{Symbol}) = a, String.(s)
f (generic function with 1 method)
julia> AbstractAlgebra.@varnames_interface f(a, s)
@f (macro with 1 method)
julia> f
f (generic function with 5 methods)
julia> f("hello", [:x, :y, :z])
("hello", ["x", "y", "z"])
julia> f("numbered", 3)
("numbered", ["x1", "x2", "x3"])
julia> f("hello", :x => (1:1, 1:2), :y => 1:2, [:z])
("hello", ["x[1, 1]" "x[1, 2]"], ["y[1]", "y[2]"], ["z"])
julia> f("projective", ["x$i$j" for i in 0:1, j in 0:1], [:y0, :y1], [:z])
("projective", ["x00" "x01"; "x10" "x11"], ["y0", "y1"], ["z"])
julia> f("fun inputs", 'a':'g', Symbol.('x':'z', [0 1]))
("fun inputs", ["a", "b", "c", "d", "e", "f", "g"], ["x0" "x1"; "y0" "y1"; "z0" "z1"])
julia> @f("hello", "x#" => (1:1, 1:2), "y#" => (1:2), [:z])
"hello"
julia> (x11, x12, y1, y2, z)
("x11", "x12", "y1", "y2", "z")
julia> g(a, s::Vector{Symbol}; kv...) = (a, kv...), String.(s)
g (generic function with 1 method)
julia> AbstractAlgebra.@varnames_interface g(a, s)
@g (macro with 1 method)
julia> @g("parameters", [:x, :y], a=1, b=2; c=3)
("parameters", :c => 3, :a => 1, :b => 2)
```
"""
macro varnames_interface(e::Expr, options::Expr...)
d = _splitdef(e)
opts = keyword_arguments(options,
Dict(:n => :n, :range => :(1:n), :macros => :(:yes)),
Dict(:macros => QuoteNode.([:no, :yes])))
quote
$(base_method(d, :(Vector{Symbol})))
$(varnames_method(d))
$(n_vars_method(d, opts[:n], opts[:range]))
$(varnames_macro(d[:f], length(d[:argnames]), opts[:macros], opts[:n], opts[:range]))
end
end
@varnames_interface free_associative_algebra(R::Ring, s)
@varnames_interface Generic.laurent_polynomial_ring(R::Ring, s)
@varnames_interface Generic.rational_function_field(K::Field, s)
@varnames_interface Generic.power_series_ring(R::Ring, prec::Int, s)
@varnames_interface Generic.power_series_ring(R::Ring, weights::Vector{Int}, prec::Int, s) macros=:no # use keyword `weights=...` instead
@varnames_interface Generic.power_series_ring(R::Ring, prec::Vector{Int}, s) n=:no macros=:no # `n` variant would clash with line above; macro would be the same as for `prec::Int`
@varnames_interface polynomial_ring(R::Ring, s)