-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathindex.html
executable file
·723 lines (689 loc) · 38.1 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
<!DOCTYPE html>
<html lang="en">
<head>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-137794670-2"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-137794670-2');
</script>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<meta name="description" content="">
<meta name="author" content="">
<title>NewGround Advanced Research</title>
<!-- The favicon -->
<link rel="apple-touch-icon" sizes="180x180" href="/apple-touch-icon.png">
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
<link rel="manifest" href="/site.webmanifest">
<link rel="mask-icon" href="/safari-pinned-tab.svg" color="#1f6fa4">
<meta name="msapplication-TileColor" content="#ffc40d">
<meta name="theme-color" content="#ffffff">
<!-- Bootstrap core CSS -->
<link href="vendor/bootstrap/css/bootstrap.min.css" rel="stylesheet">
<!-- Custom fonts for this template -->
<link href="vendor/fontawesome-free/css/all.min.css" rel="stylesheet" type="text/css">
<link href="https://fonts.googleapis.com/css?family=Montserrat:400,700" rel="stylesheet" type="text/css">
<link href='https://fonts.googleapis.com/css?family=Kaushan+Script' rel='stylesheet' type='text/css'>
<link href='https://fonts.googleapis.com/css?family=Droid+Serif:400,700,400italic,700italic' rel='stylesheet' type='text/css'>
<link href='https://fonts.googleapis.com/css?family=Roboto+Slab:400,100,300,700' rel='stylesheet' type='text/css'>
<!-- Custom styles for this template -->
<link href="css/agency.min.css" rel="stylesheet">
<!-- Facebook Pixel Code -->
<script>
!function(f,b,e,v,n,t,s)
{if(f.fbq)return;n=f.fbq=function(){n.callMethod?
n.callMethod.apply(n,arguments):n.queue.push(arguments)};
if(!f._fbq)f._fbq=n;n.push=n;n.loaded=!0;n.version='2.0';
n.queue=[];t=b.createElement(e);t.async=!0;
t.src=v;s=b.getElementsByTagName(e)[0];
s.parentNode.insertBefore(t,s)}(window,document,'script',
'https://connect.facebook.net/en_US/fbevents.js');
fbq('init', '643972292764761');
fbq('track', 'PageView');
</script>
<noscript>
<img height="1" width="1"
src="https://www.facebook.com/tr?id=643972292764761&ev=PageView
&noscript=1"/>
</noscript>
<!-- End Facebook Pixel Code -->
</head>
<body id="page-top">
<!-- Navigation -->
<nav class="navbar navbar-expand-lg navbar-light bg-light fixed-top" id="mainNav">
<div class="container">
<a class="navbar-brand js-scroll-trigger" href="http://www.newground.ua"><img src="img/logo.png" alt="Logo" width="220px" height="42px"></a>
<button class="navbar-toggler navbar-toggler-right" type="button" data-toggle="collapse" data-target="#navbarResponsive" aria-controls="navbarResponsive" aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div class="collapse navbar-collapse" id="navbarResponsive">
<ul class="navbar-nav text-uppercase ml-auto">
<li class="nav-item">
<a class="nav-link js-scroll-trigger" href="#services">Mission</a>
</li>
<li class="nav-item">
<a class="nav-link js-scroll-trigger" href="#portfolio">Research</a>
</li>
<li class="nav-item">
<a class="nav-link js-scroll-trigger" href="#about">About</a>
</li>
<!--li class="nav-item">
<a class="nav-link js-scroll-trigger" href="#team">Team</a>
</li-->
<li class="nav-item">
<a class="nav-link js-scroll-trigger" href="#contact">Contact</a>
</li>
</ul>
</div>
</div>
</nav>
<!-- Header -->
<header class="masthead">
<div class="container">
<div class="intro-text">
<!--div class="intro-lead-in">Welcome To Our Studio!</div>
<div class="intro-heading text-uppercase">It's Nice To Meet You</div>
<a class="btn btn-primary btn-xl text-uppercase js-scroll-trigger" href="#services">Tell Me More</a-->
</div>
</div>
</header>
<!-- Services -->
<section id="services">
<div class="container">
<div class="row">
<div class="col-lg-12 text-center">
<h2 class="section-heading text-uppercase">Mission</h2>
<h3 class="section-subheading text-muted">Advanced Research and AI Engineering</h3>
</div>
</div>
<div class="row text-center">
<div class="col-md-4">
<span class="fa-stack fa-4x">
<i class="fas fa-circle fa-stack-2x text-primary"></i>
<i class="fas fa-infinity fa-stack-1x fa-inverse"></i>
</span>
<h4 class="service-heading">NeuroEvolution</h4>
<p class="text-muted">We believe that the next big thing in AI will be related to the bio-inspired evolutionary algorithms.</p>
</div>
<div class="col-md-4">
<span class="fa-stack fa-4x">
<i class="fas fa-circle fa-stack-2x text-primary"></i>
<i class="fas fa-brain fa-stack-1x fa-inverse"></i>
</span>
<h4 class="service-heading">Deep Learning</h4>
<p class="text-muted">We study how neuroevolution algorithms can improve deep learning techniques.</p>
</div>
<div class="col-md-4">
<span class="fa-stack fa-4x">
<i class="fas fa-circle fa-stack-2x text-primary"></i>
<i class="fas fa-microchip fa-stack-1x fa-inverse"></i>
</span>
<h4 class="service-heading">Hardware</h4>
<p class="text-muted">Our core beliefs that cognitive systems must be embodied to acquire general intelligence.</p>
</div>
</div>
</div>
</section>
<!-- Portfolio Grid -->
<section class="bg-light" id="portfolio">
<div class="container">
<div class="row">
<div class="col-lg-12 text-center">
<h2 class="section-heading text-uppercase">Research and Development</h2>
<h3 class="section-subheading text-muted">Our research and more...</h3>
</div>
</div>
<div class="row">
<div class="col-md-4 col-sm-6 portfolio-item">
<a class="portfolio-link" data-toggle="modal" href="#portfolioModal1">
<div class="portfolio-hover">
<div class="portfolio-hover-content">
<i class="fas fa-plus fa-3x"></i>
</div>
</div>
<img class="img-fluid" src="img/portfolio/01-thumbnail.png" alt="">
</a>
<div class="portfolio-caption">
<h4>Autonomous Maze Navigation</h4>
<p class="text-muted">NeuroEvolution, Novelty Search</p>
</div>
</div>
<div class="col-md-4 col-sm-6 portfolio-item">
<a class="portfolio-link" data-toggle="modal" href="#portfolioModal2">
<div class="portfolio-hover">
<div class="portfolio-hover-content">
<i class="fas fa-plus fa-3x"></i>
</div>
</div>
<img class="img-fluid" src="img/portfolio/02-thumbnail.png" alt="">
</a>
<div class="portfolio-caption">
<h4>Psycho-Demographic profiling</h4>
<p class="text-muted">Deep Artificial Neural Networks</p>
</div>
</div>
<div class="col-md-4 col-sm-6 portfolio-item">
<a class="portfolio-link" data-toggle="modal" href="#portfolioModal3">
<div class="portfolio-hover">
<div class="portfolio-hover-content">
<i class="fas fa-plus fa-3x"></i>
</div>
</div>
<img class="img-fluid" src="img/portfolio/03-thumbnail.png" alt="">
</a>
<div class="portfolio-caption">
<h4>Brain-Computer Interface</h4>
<p class="text-muted">EEG, Machine Learning</p>
</div>
</div>
<div class="col-md-4 col-sm-6 portfolio-item">
<a class="portfolio-link" data-toggle="modal" href="#portfolioModal4">
<div class="portfolio-hover">
<div class="portfolio-hover-content">
<i class="fas fa-plus fa-3x"></i>
</div>
</div>
<img class="img-fluid" src="img/portfolio/04-thumbnail.png" alt="">
</a>
<div class="portfolio-caption">
<h4>NEAT Implementation with GOLang</h4>
<p class="text-muted">NeuroEvolution (NEAT), RL</p>
</div>
</div>
<div class="col-md-4 col-sm-6 portfolio-item">
<a class="portfolio-link" data-toggle="modal" href="#portfolioModal5">
<div class="portfolio-hover">
<div class="portfolio-hover-content">
<i class="fas fa-plus fa-3x"></i>
</div>
</div>
<img class="img-fluid" src="img/portfolio/05-thumbnail.png" alt="">
</a>
<div class="portfolio-caption">
<h4>Artificial Swarm Intelligence</h4>
<p class="text-muted">NeuroEvolution, Active Inference, FEP</p>
</div>
</div>
<div class="col-md-4 col-sm-6 portfolio-item">
<a class="portfolio-link" data-toggle="modal" href="#portfolioModal6">
<div class="portfolio-hover">
<div class="portfolio-hover-content">
<i class="fas fa-plus fa-3x"></i>
</div>
</div>
<img class="img-fluid" src="img/portfolio/06-thumbnail.png" alt="">
</a>
<div class="portfolio-caption">
<h4>Future Technologies Conference 2017</h4>
<p class="text-muted">Deep Artificial Neural Networks</p>
</div>
</div>
</div>
</div>
</section>
<!-- About -->
<section id="about">
<div class="container">
<div class="row">
<div class="col-lg-12 text-center">
<h2 class="section-heading text-uppercase">About</h2>
<h3 class="section-subheading text-muted">Life is poised on the edge of chaos</h3>
</div>
</div>
<div class="row">
<div class="col-lg-12">
<ul class="timeline">
<li>
<div class="timeline-image">
<img class="rounded-circle img-fluid" src="img/about/0.png" alt="">
</div>
<div class="timeline-panel">
<div class="timeline-heading">
<h4>2003-2008</h4>
<h4 class="subheading">Intelligent NPC for games</h4>
</div>
<div class="timeline-body">
<p class="text-muted">We started our acquintance with machine learning and artificial intelligence by developing intelligent non-player characters for a range of mobile games.</p>
</div>
</div>
</li>
<li class="timeline-inverted">
<div class="timeline-image">
<img class="rounded-circle img-fluid" src="img/about/1.png" alt="">
</div>
<div class="timeline-panel">
<div class="timeline-heading">
<h4>2007-2011</h4>
<h4 class="subheading">Ineractive Art Installations</h4>
</div>
<div class="timeline-body">
<p class="text-muted">Using advanced computer vision techniques we built interactive art installations and interactive promotional stands for well-known international brands. We designed and implemented IoT hardware platforms for Bluetooth proximity marketing installations. We built augmented reality-based installation for motor show exhibition. We designed and implemented the music generation system used on several mass events.</p>
</div>
</div>
</li>
<li>
<div class="timeline-image">
<img class="rounded-circle img-fluid" src="img/about/2.png" alt="">
</div>
<div class="timeline-panel">
<div class="timeline-heading">
<h4>2014-∞</h4>
<h4 class="subheading">Deep Machine Learning</h4>
</div>
<div class="timeline-body">
<p class="text-muted">We started with active research and exploration of deep machine learning techniques and algorithms. Our team participated in a multitude of ML/DS contests. We do active research in the area of evolutionary computation and brain-computer interfaces. Our papers were published at arXiv, ResearchGate, Preprints, etc.</p>
</div>
</div>
</li>
<li class="timeline-inverted">
<div class="timeline-image">
<img class="rounded-circle img-fluid" src="img/about/3.png" alt="">
</div>
<div class="timeline-panel">
<div class="timeline-heading">
<h4>November 2017</h4>
<h4 class="subheading">Future Technologies Conference</h4>
</div>
<div class="timeline-body">
<p class="text-muted">We presented our research at the Future Technologies Conference 2017 in Vancouver BC, Canada</p>
</div>
</div>
</li>
<li class="timeline-inverted">
<div class="timeline-image">
<h4>Be Part
<br>Of Our
<br>Story!</h4>
</div>
</li>
</ul>
</div>
</div>
</div>
</section>
<!-- Team
<section class="bg-light" id="team">
<div class="container">
<div class="row">
<div class="col-lg-12 text-center">
<h2 class="section-heading text-uppercase">Our Amazing Team</h2>
<h3 class="section-subheading text-muted">Lorem ipsum dolor sit amet consectetur.</h3>
</div>
</div>
<div class="row">
<div class="col-sm-4">
<div class="team-member">
<img class="mx-auto rounded-circle" src="img/team/1.jpg" alt="">
<h4>Kay Garland</h4>
<p class="text-muted">Lead Designer</p>
<ul class="list-inline social-buttons">
<li class="list-inline-item">
<a href="#">
<i class="fab fa-twitter"></i>
</a>
</li>
<li class="list-inline-item">
<a href="#">
<i class="fab fa-facebook-f"></i>
</a>
</li>
<li class="list-inline-item">
<a href="#">
<i class="fab fa-linkedin-in"></i>
</a>
</li>
</ul>
</div>
</div>
<div class="col-sm-4">
<div class="team-member">
<img class="mx-auto rounded-circle" src="img/team/2.jpg" alt="">
<h4>Larry Parker</h4>
<p class="text-muted">Lead Marketer</p>
<ul class="list-inline social-buttons">
<li class="list-inline-item">
<a href="#">
<i class="fab fa-twitter"></i>
</a>
</li>
<li class="list-inline-item">
<a href="#">
<i class="fab fa-facebook-f"></i>
</a>
</li>
<li class="list-inline-item">
<a href="#">
<i class="fab fa-linkedin-in"></i>
</a>
</li>
</ul>
</div>
</div>
<div class="col-sm-4">
<div class="team-member">
<img class="mx-auto rounded-circle" src="img/team/3.jpg" alt="">
<h4>Diana Pertersen</h4>
<p class="text-muted">Lead Developer</p>
<ul class="list-inline social-buttons">
<li class="list-inline-item">
<a href="#">
<i class="fab fa-twitter"></i>
</a>
</li>
<li class="list-inline-item">
<a href="#">
<i class="fab fa-facebook-f"></i>
</a>
</li>
<li class="list-inline-item">
<a href="#">
<i class="fab fa-linkedin-in"></i>
</a>
</li>
</ul>
</div>
</div>
</div>
<div class="row">
<div class="col-lg-8 mx-auto text-center">
<p class="large text-muted">Lorem ipsum dolor sit amet, consectetur adipisicing elit. Aut eaque, laboriosam veritatis, quos non quis ad perspiciatis, totam corporis ea, alias ut unde.</p>
</div>
</div>
</div>
</section> -->
<!-- Clients
<section class="py-5">
<div class="container">
<div class="row">
<div class="col-md-3 col-sm-6">
<a href="#">
<img class="img-fluid d-block mx-auto" src="img/logos/envato.jpg" alt="">
</a>
</div>
<div class="col-md-3 col-sm-6">
<a href="#">
<img class="img-fluid d-block mx-auto" src="img/logos/designmodo.jpg" alt="">
</a>
</div>
<div class="col-md-3 col-sm-6">
<a href="#">
<img class="img-fluid d-block mx-auto" src="img/logos/themeforest.jpg" alt="">
</a>
</div>
<div class="col-md-3 col-sm-6">
<a href="#">
<img class="img-fluid d-block mx-auto" src="img/logos/creative-market.jpg" alt="">
</a>
</div>
</div>
</div>
</section> -->
<!-- Contact -->
<section id="contact">
<div class="container">
<div class="row">
<div class="col-lg-12 text-center">
<h2 class="section-heading text-uppercase">Contact Us</h2>
<h3 class="section-subheading">Discuss you projects with us.</h3>
</div>
</div>
<div class="row">
<div class="col-md-12 contact-info text-center">
<h2 class="section-heading">Email Us</h2>
<h3 class="section-subheading">[email protected]</h3>
</div>
</div>
</div>
</section>
<!-- Footer -->
<footer>
<div class="container">
<div class="row">
<div class="col-md-4">
<span class="copyright">Copyright © NewGround LLC 2024</span>
</div>
<div class="col-md-4">
<ul class="list-inline social-buttons">
<li class="list-inline-item">
<a href="https://www.facebook.com/NewGround.IT/">
<i class="fab fa-facebook-f"></i>
</a>
</li>
<li class="list-inline-item">
<a href="https://www.linkedin.com/company/newground_2">
<i class="fab fa-linkedin-in"></i>
</a>
</li>
<li class="list-inline-item">
<a href="https://github.com/yaricom/">
<i class="fab fa-github"></i>
</a>
</li>
</ul>
</div>
<!--div class="col-md-4">
<ul class="list-inline quicklinks">
<li class="list-inline-item">
<a href="#">Privacy Policy</a>
</li>
<li class="list-inline-item">
<a href="#">Terms of Use</a>
</li>
</ul>
</div-->
</div>
</div>
</footer>
<!-- Portfolio Modals -->
<!-- Modal 1 -->
<div class="portfolio-modal modal fade" id="portfolioModal1" tabindex="-1" role="dialog" aria-hidden="true">
<div class="modal-dialog">
<div class="modal-content">
<div class="close-modal" data-dismiss="modal">
<div class="lr">
<div class="rl"></div>
</div>
</div>
<div class="container">
<div class="row">
<div class="col-lg-8 mx-auto">
<div class="modal-body">
<!-- Project Details Go Here -->
<h2 class="text-uppercase">Autonomous Maze Navigation</h2>
<p class="item-intro text-muted">Creation of Autonomous Artificial Intelligent Agents using Novelty Search method of fitness function optimization</p>
<img class="img-fluid d-block mx-auto" src="img/portfolio/01-full.png" alt="">
<p>In the experiment we studied how Novelty Search (NS)1 method of fitness function optimization performs compared to traditional objective-based ones for unsupervised training of Artificial Intelligent Agents to do spatial navigation in complex maze environment. The main idea behind NS optimization is to rather look for novel outcomes in the search space than the distance to the final objective: the maze exit. The Novelty Search assigns higher fitness values to the Intelligent Agent capable to find the most novel solution among all previous tries. Despite its ignorance to the final objective the NS happens to be extremely effective optimization method capable of breeding AAIA, which crack deceptive real-world tasks even in the realms where traditional objective-based methods have failed completely. The main assumption about what makes this possible, is that in order to reach final goal, AAIA must find several intermediate goals (stepping stones) which in most cases do not resemble the ultimate objective. Sometimes Intelligent Agent must step back to avoid deceptive traps. By doing this it will see a decrease in value of objective-based fitness function for a moment but will get a better outcomes in the future. This is one of the fundamental properties of the real-world environment that the exact route to the final objective in most cases can not be predicted in advance, and all intermediate stepping stones should be found by taking the path.<br/>The Novelty Search optimization seems like a natural fit for Neuro-evolution family of genetic algorithms producing elegant custom Artificial Neural Networks (ANNs). In the experiment we combined NS with Neuroevolution of Augmented Topologies algorithm2 which efficiently evolve ANNs through complexification by augmenting its topologies.</p>
<ul class="list-inline">
<li>Date: September 2018</li>
<li><a href="https://github.com/yaricom/goNEAT_NS/">Source Code</a></li>
<li><a href="https://www.researchgate.net/project/Novelty-Search-optimization-for-NeuroEvolution">Project Page</a></li>
</ul>
<button class="btn btn-primary" data-dismiss="modal" type="button">
<i class="fas fa-times"></i>
Close Project</button>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<!-- Modal 2 -->
<div class="portfolio-modal modal fade" id="portfolioModal2" tabindex="-1" role="dialog" aria-hidden="true">
<div class="modal-dialog">
<div class="modal-content">
<div class="close-modal" data-dismiss="modal">
<div class="lr">
<div class="rl"></div>
</div>
</div>
<div class="container">
<div class="row">
<div class="col-lg-8 mx-auto">
<div class="modal-body">
<!-- Project Details Go Here -->
<h2 class="text-uppercase">Psycho-demographic profiling</h2>
<p class="item-intro text-muted">Applying Deep Machine Learning for psycho-demographic profiling of Internet users using O.C.E.A.N. model of personality</p>
<img class="img-fluid d-block mx-auto" src="img/portfolio/02-full.png" alt="">
<p>In the modern era, each Internet user leaves enormous amounts of auxiliary digital residuals (footprints) by using a variety of on-line services. All this data is already collected and stored for many years. In recent works, it was demonstrated that it's possible to apply simple machine learning methods to analyze collected digital footprints and to create psycho-demographic profiles of individuals. However, while these works clearly demonstrated the applicability of machine learning methods for such an analysis, created simple prediction models still lacks accuracy necessary to be successfully applied for practical needs. We have assumed that using advanced deep machine learning methods may considerably increase the accuracy of predictions. We started with simple machine learning methods to estimate basic prediction performance and moved further by applying advanced methods based on shallow and deep neural networks. Then we compared prediction power of studied models and made conclusions about its performance. Finally, we made hypotheses how prediction accuracy can be further improved. As result of this work, we provide full source code used in the experiments for all interested researchers and practitioners in corresponding GitHub repository. We believe that applying deep machine learning for psycho-demographic profiling may have an enormous impact on the society (for good or worse) and provides means for Artificial Intelligence (AI) systems to better understand humans by creating their psychological profiles. Thus AI agents may achieve the human-like ability to participate in conversation (communication) flow by anticipating human opponents' reactions, expectations, and behavior.</p>
<ul class="list-inline">
<li>Date: March 2017</li>
<li><a href="https://github.com/NewGround-LLC/psistats">Source Code</a></li>
<li><a href="https://arxiv.org/abs/1703.06914v2">arXiv:1703.06914v2</a></li>
</ul>
<button class="btn btn-primary" data-dismiss="modal" type="button">
<i class="fas fa-times"></i>
Close Project</button>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<!-- Modal 3 -->
<div class="portfolio-modal modal fade" id="portfolioModal3" tabindex="-1" role="dialog" aria-hidden="true">
<div class="modal-dialog">
<div class="modal-content">
<div class="close-modal" data-dismiss="modal">
<div class="lr">
<div class="rl"></div>
</div>
</div>
<div class="container">
<div class="row">
<div class="col-lg-8 mx-auto">
<div class="modal-body">
<!-- Project Details Go Here -->
<h2 class="text-uppercase">Brain-Computer Interface</h2>
<p class="item-intro text-muted">Applying advanced machine learning models to classify electro-physiological activity of human brain for use in biometric identification</p>
<img class="img-fluid d-block mx-auto" src="img/portfolio/03-full.png" alt="">
<p>In this article we present the results of our research related to the study of correlations between specific visual stimulation and the elicited brain's electro-physiological response collected by EEG sensors from a group of participants. We will look at how the various characteristics of visual stimulation affect the measured electro-physiological response of the brain and describe the optimal parameters found that elicit a steady-state visually evoked potential (SSVEP) in certain parts of the cerebral cortex where it can be reliably perceived by the electrode of the EEG device. After that, we continue with a description of the advanced machine learning pipeline model that can perform confident classification of the collected EEG data in order to (a) reliably distinguish signal from noise (about 85% validation score) and (b) reliably distinguish between EEG records collected from different human participants (about 80% validation score). Finally, we demonstrate that the proposed method works reliably even with an inexpensive (less than $100) consumer-grade EEG sensing device and with participants who do not have previous experience with EEG technology (EEG illiterate). All this in combination opens up broad prospects for the development of new types of consumer devices, [e.g.] based on virtual reality helmets or augmented reality glasses where EEG sensor can be easily integrated. The proposed method can be used to improve an online user experience by providing [e.g.] password-less user identification for VR / AR applications. It can also find a more advanced application in intensive care units where collected EEG data can be used to classify the level of conscious awareness of patients during anesthesia or to automatically detect hardware failures by classifying the input signal as noise.</p>
<ul class="list-inline">
<li>Date: August 2017</li>
<li><a href="https://github.com/yaricom/brainhash">Source Code</a></li>
<li><a href="https://arxiv.org/abs/1708.01167">arXiv:1708.01167v1</a></li>
</ul>
<button class="btn btn-primary" data-dismiss="modal" type="button">
<i class="fas fa-times"></i>
Close Project</button>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<!-- Modal 4 -->
<div class="portfolio-modal modal fade" id="portfolioModal4" tabindex="-1" role="dialog" aria-hidden="true">
<div class="modal-dialog">
<div class="modal-content">
<div class="close-modal" data-dismiss="modal">
<div class="lr">
<div class="rl"></div>
</div>
</div>
<div class="container">
<div class="row">
<div class="col-lg-8 mx-auto">
<div class="modal-body">
<!-- Project Details Go Here -->
<h2 class="text-uppercase">NEAT Implementation with GOLang</h2>
<p class="item-intro text-muted">The GOLang implementation of the NeuroEvolution of Augmenting Topologies (NEAT) algorithm.</p>
<img class="img-fluid d-block mx-auto" src="img/portfolio/04-full.png" alt="">
<p>The Neuroevolution (NE) is an evolution of Artificial Neural Networks (ANN) using genetic algorithms in order to find optimal ANN parameters and topology. Neuroevolution of ANN may assume search for optimal weights of connections between ANN nodes as well as search for optimal topology of resulting ANN. The NEAT method implemented in this work do search for both: optimal connections weights and topology for given task (number of NN nodes per layer and their interconnections).<br/>The NEAT method is based on three key ideas. First, to allow network structures to increase in complexity over generations, a method is needed to keep track of which gene is which. Otherwise, it is not clear in later generations which individual is compatible with which in a population of diverse structures, or how their genes should be combined to produce offspring. NEAT solves this problem by assigning a unique historical marking to every new piece of network structure that appears through a structural mutation. The historical marking is a number assigned to each gene corresponding to its order of appearance over the course of evolution. The numbers are inherited during crossover unchanged, and allow NEAT to perform crossover among diverse topologies without the need for expensive topological analysis.<br/>Second, historical markings make it possible for the system to divide the population into species based on how similar networks are topologically. That way, individuals compete primarily within their own niches instead of with the population at large. Because adding new structure is often initially disadvantageous, this separation means that unique topological innovations are protected and therefore have time to optimize their structure before competing with other niches in the population.<br/>Third, many systems that evolve network topologies and weights begin evolution with a population of random topologies. In contrast, NEAT begins with a uniform population of simple networks with no hidden nodes, differing only in their initial random weights. Because of speciation, novel topologies gradually accumulate over evolution, thereby allowing diverse and complex phenotype patterns to be represented. No limit is placed on the size to which topologies can grow. New structure is introduced incrementally as structural mutations occur, and only those structures survive that are found to be useful through fitness evaluations. In effect, then, NEAT searches for a compact, appropriate topology by incrementally increasing the complexity of existing structure.</p>
<ul class="list-inline">
<li>Date: September 2017 - February 2019</li>
<li><a href="https://github.com/yaricom/goNEAT">Source Code</a></li>
<li><a href="https://www.researchgate.net/project/NeuroEvolution-of-Augmented-Topologies">Project Page</a></li>
</ul>
<button class="btn btn-primary" data-dismiss="modal" type="button">
<i class="fas fa-times"></i>
Close Project</button>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<!-- Modal 5 -->
<div class="portfolio-modal modal fade" id="portfolioModal5" tabindex="-1" role="dialog" aria-hidden="true">
<div class="modal-dialog">
<div class="modal-content">
<div class="close-modal" data-dismiss="modal">
<div class="lr">
<div class="rl"></div>
</div>
</div>
<div class="container">
<div class="row">
<div class="col-lg-8 mx-auto">
<div class="modal-body">
<!-- Project Details Go Here -->
<h2 class="text-uppercase">Artificial Swarm Intelligence</h2>
<p class="item-intro text-muted">Artificial Swarm Intelligence and Cooperative Robotic Systems</p>
<img class="img-fluid d-block mx-auto" src="img/portfolio/05-full.png" alt="">
<p>In this paper, we look at how Artificial Swarm Intelligence can evolve using evolutionary algorithms that try to minimize the sensory surprise of the system. We will show how to apply the free-energy principle, borrowed from statistical physics, to quantitatively describe the optimization method (sensory surprise minimization), which can be used to support lifelong learning.<br/>We provide our ideas about how to combine this optimization method with evolutionary algorithms in order to boost the development of specialized Artificial Neural Networks, which define the proprioceptive configuration of particular robotic units that are part of a swarm.<br/>We consider how optimization of the free-energy can promote the homeostasis of the swarm system, i.e. ensures that the system remains within its sensory boundaries throughout its active lifetime.<br/>We show how complex distributed cognitive systems can be build in the form of hierarchical modular system, which consists of specialized micro-intelligent agents connected through information channels.<br/>We also considered the co-evolution of various robotic swarm units, which can result in development of proprioception and a comprehensive awareness of the properties of the environment.<br/>And finally, we provide a brief outline of how this system can be implemented in practice and of our progress in this area.</p>
<ul class="list-inline">
<li>Date: January 2019</li>
<li><a href="https://doi.org/10.20944/preprints201901.0282.v1">doi:10.20944/preprints201901.0282.v1</a></li>
</ul>
<button class="btn btn-primary" data-dismiss="modal" type="button">
<i class="fas fa-times"></i>
Close Project</button>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<!-- Modal 6 -->
<div class="portfolio-modal modal fade" id="portfolioModal6" tabindex="-1" role="dialog" aria-hidden="true">
<div class="modal-dialog">
<div class="modal-content">
<div class="close-modal" data-dismiss="modal">
<div class="lr">
<div class="rl"></div>
</div>
</div>
<div class="container">
<div class="row">
<div class="col-lg-8 mx-auto">
<div class="modal-body">
<!-- Project Details Go Here -->
<h2 class="text-uppercase">Future Technologies Conference 2017</h2>
<p class="item-intro text-muted">Future Technologies Conference (FTC) 2017 29-30 November 2017 | Vancouver, Canada</p>
<img class="img-fluid d-block mx-auto" src="img/portfolio/06-full.png" alt="">
<p>We presented our research paper "Applying Deep Machine Learning for Psycho-Demographic Profiling of Internet Users using O.C.E.A.N. Model of Personality" at the Future Technologies Conference 2017.<br/>In this work we decided to test whether applying advanced machine learning methods, such as deep neural networks, to analyze digital footprints of Internet users can outperform results of previous research conducted by M. Kosinski: Mining Big Data to Extract Patterns and Predict Real-Life Outcomes.</p>
<ul class="list-inline">
<li>Date: November 2017</li>
<li><a href="https://saiconference.com/Downloads/FTC2017/Proceedings/52_Paper_195-Applying_Deep_Machine_Learning.pdf">Presented paper</a></li>
</ul>
<button class="btn btn-primary" data-dismiss="modal" type="button">
<i class="fas fa-times"></i>
Close Project</button>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<!-- Bootstrap core JavaScript -->
<script src="vendor/jquery/jquery.min.js"></script>
<script src="vendor/bootstrap/js/bootstrap.bundle.min.js"></script>
<!-- Plugin JavaScript -->
<script src="vendor/jquery-easing/jquery.easing.min.js"></script>
<!-- Contact form JavaScript -->
<script src="js/jqBootstrapValidation.js"></script>
<!--script src="js/contact_me.js"></script-->
<!-- Custom scripts for this template -->
<script src="js/agency.min.js"></script>
</body>
</html>