forked from allanj/pytorch_neural_crf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransformers_trainer.py
244 lines (214 loc) · 13.2 KB
/
transformers_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import argparse
import random
import numpy as np
from src.config import Config, evaluate_batch_insts
import time
from src.model import TransformersCRF
import torch
from typing import List
from termcolor import colored
import os
from src.config.utils import write_results
from src.config.transformers_util import get_huggingface_optimizer_and_scheduler
from src.config import context_models, get_metric
import pickle
import tarfile
from tqdm import tqdm
from collections import Counter
from src.data import TransformersNERDataset
from torch.utils.data import DataLoader
def set_seed(opt, seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if opt.device.startswith("cuda"):
print("using GPU...", torch.cuda.current_device())
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def parse_arguments(parser):
###Training Hyperparameters
parser.add_argument('--device', type=str, default="cpu", choices=['cpu', 'cuda:0', 'cuda:1', 'cuda:2'],
help="GPU/CPU devices")
parser.add_argument('--seed', type=int, default=42, help="random seed")
parser.add_argument('--dataset', type=str, default="conll2003_sample")
parser.add_argument('--optimizer', type=str, default="adamw", help="This would be useless if you are working with transformers package")
parser.add_argument('--learning_rate', type=float, default=2e-5, help="usually we use 0.01 for sgd but 2e-5 working with bert/roberta")
parser.add_argument('--momentum', type=float, default=0.0)
parser.add_argument('--l2', type=float, default=1e-8)
parser.add_argument('--lr_decay', type=float, default=0)
parser.add_argument('--batch_size', type=int, default=30, help="default batch size is 10 (works well for normal neural crf), here default 30 for bert-based crf")
parser.add_argument('--num_epochs', type=int, default=100, help="Usually we set to 100.")
parser.add_argument('--train_num', type=int, default=-1, help="-1 means all the data")
parser.add_argument('--dev_num', type=int, default=-1, help="-1 means all the data")
parser.add_argument('--test_num', type=int, default=-1, help="-1 means all the data")
parser.add_argument('--max_no_incre', type=int, default=30, help="early stop when there is n epoch not increasing on dev")
parser.add_argument('--max_grad_norm', type=float, default=1.0, help="The maximum gradient norm, if <=0, means no clipping, usually we don't use clipping for normal neural ncrf")
##model hyperparameter
parser.add_argument('--model_folder', type=str, default="english_model", help="The name to save the model files")
parser.add_argument('--hidden_dim', type=int, default=0, help="hidden size of the LSTM, usually we set to 200 for LSTM-CRF")
parser.add_argument('--dropout', type=float, default=0.5, help="dropout for embedding")
parser.add_argument('--embedder_type', type=str, default="bert-base-cased",
choices=list(context_models.keys()),
help="you can use 'bert-base-uncased' and so on")
parser.add_argument('--parallel_embedder', type=int, default=0,
choices=[0, 1],
help="use parallel training for those (BERT) models in the transformers. Parallel on GPUs")
parser.add_argument('--add_iobes_constraint', type=int, default=0, choices=[0,1], help="add IOBES constraint for transition parameters to enforce valid transitions")
parser.add_argument('--mode', type=str, default="train", choices=["train", "test"], help="training model or test mode")
parser.add_argument('--test_file', type=str, default="data/conll2003_sample/test.txt", help="test file for test mode, only applicable in test mode")
args = parser.parse_args()
for k in args.__dict__:
print(k + ": " + str(args.__dict__[k]))
return args
def train_model(config: Config, epoch: int, train_loader: DataLoader, dev_loader: DataLoader, test_loader: DataLoader):
### Data Processing Info
train_num = len(train_loader)
print(f"[Data Info] number of training instances: {train_num}")
print(
colored(f"[Model Info]: Working with transformers package from huggingface with {config.embedder_type}", 'red'))
print(colored(f"[Optimizer Info]: You should be aware that you are using the optimizer from huggingface.", 'red'))
print(colored(f"[Optimizer Info]: Change the optimier in transformers_util.py if you want to make some modifications.", 'red'))
model = TransformersCRF(config)
optimizer, scheduler = get_huggingface_optimizer_and_scheduler(config, model, num_training_steps=len(train_loader) * epoch,
weight_decay=0.0, eps = 1e-8, warmup_step=0)
print(colored(f"[Optimizer Info] Modify the optimizer info as you need.", 'red'))
print(optimizer)
model.to(config.device)
best_dev = [-1, 0]
best_test = [-1, 0]
model_folder = config.model_folder
res_folder = "results"
if os.path.exists("model_files/" + model_folder):
raise FileExistsError(
f"The folder model_files/{model_folder} exists. Please either delete it or create a new one "
f"to avoid override.")
model_path = f"model_files/{model_folder}/lstm_crf.m"
config_path = f"model_files/{model_folder}/config.conf"
res_path = f"{res_folder}/{model_folder}.results"
print("[Info] The model will be saved to: %s.tar.gz" % (model_folder))
os.makedirs(f"model_files/{model_folder}", exist_ok= True) ## create model files. not raise error if exist
os.makedirs(res_folder, exist_ok=True)
no_incre_dev = 0
print(colored(f"[Train Info] Start training, you have set to stop if performace not increase for {config.max_no_incre} epochs",'red'))
for i in tqdm(range(1, epoch + 1), desc="Epoch"):
epoch_loss = 0
start_time = time.time()
model.zero_grad()
model.train()
for iter, batch in tqdm(enumerate(train_loader, 1), desc="--training batch", total=len(train_loader)):
optimizer.zero_grad()
loss = model(words = batch.input_ids.to(config.device), word_seq_lens = batch.word_seq_len.to(config.device),
orig_to_tok_index = batch.orig_to_tok_index.to(config.device), input_mask = batch.attention_mask.to(config.device),
labels = batch.label_ids.to(config.device))
epoch_loss += loss.item()
loss.backward()
if config.max_grad_norm > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), config.max_grad_norm)
optimizer.step()
optimizer.zero_grad()
scheduler.step()
model.zero_grad()
end_time = time.time()
print("Epoch %d: %.5f, Time is %.2fs" % (i, epoch_loss, end_time - start_time), flush=True)
model.eval()
dev_metrics = evaluate_model(config, model, dev_loader, "dev", dev_loader.dataset.insts)
test_metrics = evaluate_model(config, model, test_loader, "test", test_loader.dataset.insts)
if dev_metrics[2] > best_dev[0]:
print("saving the best model...")
no_incre_dev = 0
best_dev[0] = dev_metrics[2]
best_dev[1] = i
best_test[0] = test_metrics[2]
best_test[1] = i
torch.save(model.state_dict(), model_path)
# Save the corresponding config as well.
f = open(config_path, 'wb')
pickle.dump(config, f)
f.close()
write_results(res_path, test_loader.dataset.insts)
else:
no_incre_dev += 1
model.zero_grad()
if no_incre_dev >= config.max_no_incre:
print("early stop because there are %d epochs not increasing f1 on dev"%no_incre_dev)
break
print("Archiving the best Model...")
with tarfile.open(f"model_files/{model_folder}.tar.gz", "w:gz") as tar:
tar.add(f"model_files/{model_folder}", arcname=os.path.basename(model_folder))
print("Finished archiving the models")
print("The best dev: %.2f" % (best_dev[0]))
print("The corresponding test: %.2f" % (best_test[0]))
print("Final testing.")
model.load_state_dict(torch.load(model_path))
model.eval()
evaluate_model(config, model, test_loader, "test", test_loader.dataset.insts)
write_results(res_path, test_loader.dataset.insts)
def evaluate_model(config: Config, model: TransformersCRF, data_loader: DataLoader, name: str, insts: List, print_each_type_metric: bool = False):
## evaluation
p_dict, total_predict_dict, total_entity_dict = Counter(), Counter(), Counter()
batch_size = data_loader.batch_size
with torch.no_grad():
for batch_id, batch in tqdm(enumerate(data_loader, 0), desc="--evaluating batch", total=len(data_loader)):
one_batch_insts = insts[batch_id * batch_size:(batch_id + 1) * batch_size]
batch_max_scores, batch_max_ids = model.decode(words= batch.input_ids.to(config.device),
word_seq_lens = batch.word_seq_len.to(config.device),
orig_to_tok_index = batch.orig_to_tok_index.to(config.device),
input_mask = batch.attention_mask.to(config.device))
batch_p , batch_predict, batch_total = evaluate_batch_insts(one_batch_insts, batch_max_ids, batch.label_ids, batch.word_seq_len, config.idx2labels)
p_dict += batch_p
total_predict_dict += batch_predict
total_entity_dict += batch_total
batch_id += 1
if print_each_type_metric:
for key in total_entity_dict:
precision_key, recall_key, fscore_key = get_metric(p_dict[key], total_entity_dict[key], total_predict_dict[key])
print(f"[{key}] Prec.: {precision_key:.2f}, Rec.: {recall_key:.2f}, F1: {fscore_key:.2f}")
total_p = sum(list(p_dict.values()))
total_predict = sum(list(total_predict_dict.values()))
total_entity = sum(list(total_entity_dict.values()))
precision, recall, fscore = get_metric(total_p, total_entity, total_predict)
print(colored(f"[{name} set Total] Prec.: {precision:.2f}, Rec.: {recall:.2f}, F1: {fscore:.2f}", 'blue'), flush=True)
return [precision, recall, fscore]
def main():
parser = argparse.ArgumentParser(description="LSTM CRF implementation")
opt = parse_arguments(parser)
if opt.mode == "train":
conf = Config(opt)
set_seed(opt, conf.seed)
print(colored(f"[Data Info] Tokenizing the instances using '{conf.embedder_type}' tokenizer", "blue"))
tokenizer = context_models[conf.embedder_type]["tokenizer"].from_pretrained(conf.embedder_type)
print(colored(f"[Data Info] Reading dataset from: \n{conf.train_file}\n{conf.dev_file}\n{conf.test_file}", "blue"))
train_dataset = TransformersNERDataset(conf.train_file, tokenizer, number=conf.train_num, is_train=True)
conf.label2idx = train_dataset.label2idx
conf.idx2labels = train_dataset.idx2labels
dev_dataset = TransformersNERDataset(conf.dev_file, tokenizer, number=conf.dev_num, label2idx=train_dataset.label2idx, is_train=False)
test_dataset = TransformersNERDataset(conf.test_file, tokenizer, number=conf.test_num, label2idx=train_dataset.label2idx, is_train=False)
num_workers = 8
conf.label_size = len(train_dataset.label2idx)
train_dataloader = DataLoader(train_dataset, batch_size=conf.batch_size, shuffle=True, num_workers=num_workers,
collate_fn=train_dataset.collate_fn)
dev_dataloader = DataLoader(dev_dataset, batch_size=conf.batch_size, shuffle=False, num_workers=num_workers,
collate_fn=dev_dataset.collate_fn)
test_dataloader = DataLoader(test_dataset, batch_size=conf.batch_size, shuffle=False, num_workers=num_workers,
collate_fn=test_dataset.collate_fn)
train_model(conf, conf.num_epochs, train_dataloader, dev_dataloader, test_dataloader)
else:
folder_name = f"model_files/{opt.model_folder}"
device = torch.device(opt.device)
assert os.path.isdir(folder_name)
f = open(folder_name + "/config.conf", 'rb')
saved_config = pickle.load(f) # we use `label2idx` from old config, but test file, test number
f.close()
print(colored(f"[Data Info] Tokenizing the instances using '{saved_config.embedder_type}' tokenizer", "blue"))
tokenizer = context_models[saved_config.embedder_type]["tokenizer"].from_pretrained(saved_config.embedder_type)
test_dataset = TransformersNERDataset(opt.test_file, tokenizer, number=opt.test_num,
label2idx=saved_config.label2idx, is_train=False)
test_dataloader = DataLoader(test_dataset, batch_size=opt.batch_size, shuffle=False, num_workers=1,
collate_fn=test_dataset.collate_fn)
model = TransformersCRF(saved_config)
model.load_state_dict(torch.load(f"{folder_name}/lstm_crf.m", map_location=device))
model.eval()
evaluate_model(config=saved_config, model=model, data_loader=test_dataloader, name="test mode", insts = test_dataset.insts,
print_each_type_metric=False)
if __name__ == "__main__":
main()