-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconvert-pth-to-ggml.py
239 lines (204 loc) · 8.76 KB
/
convert-pth-to-ggml.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# Convert a LLaMA model checkpoint to a ggml compatible file
#
# Load the model using Torch
# Iterate over all variables and write them to a binary file.
#
# For each variable, write the following:
# - Number of dimensions (int)
# - Name length (int)
# - Dimensions (int[n_dims])
# - Name (char[name_length])
# - Data (float[n_dims])
#
# By default, the bigger matrices are converted to 16-bit floats.
# This can be disabled by adding the "use-f32" CLI argument.
#
# At the start of the ggml file we write the model parameters
# and vocabulary.
#
import os
import sys
import json
import struct
import numpy as np
import torch
import transformers
import torch
from sentencepiece import SentencePieceProcessor
# if models/ directory does not exist, raise an error
if not os.path.exists("models"):
raise Exception("Please create a models/ directory and add the LLaMa model files there.")
# if adapter_model.bin is not in directory, download it from https://huggingface.co/tloen/alpaca-lora-7b/resolve/main/adapter_model.bin
if not os.path.exists("adapter_model.bin"):
import urllib.request
url = "https://huggingface.co/tloen/alpaca-lora-7b/resolve/main/adapter_model.bin"
urllib.request.urlretrieve(url, "adapter_model.bin")
if len(sys.argv) < 3:
print("Usage: convert-ckpt-to-ggml.py dir-model ftype\n")
print(" ftype == 0 -> float32")
print(" ftype == 1 -> float16")
sys.exit(1)
# output in the same directory as the model
dir_model = sys.argv[1]
fname_hparams = sys.argv[1] + "/params.json"
fname_tokenizer = sys.argv[1] + "/../tokenizer.model"
def get_n_parts(dim):
assert dim == 4096, "Only LLaMa 7B has been instruct tuned."
if dim == 4096:
return 1
elif dim == 5120:
return 2
elif dim == 6656:
return 4
elif dim == 8192:
return 8
else:
print("Invalid dim: " + str(dim))
sys.exit(1)
# possible data types
# ftype == 0 -> float32
# ftype == 1 -> float16
#
# map from ftype to string
ftype_str = ["f32", "f16"]
ftype = 1
if len(sys.argv) > 2:
ftype = int(sys.argv[2])
if ftype < 0 or ftype > 1:
print("Invalid ftype: " + str(ftype))
sys.exit(1)
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin"
with open(fname_hparams, "r") as f:
hparams = json.load(f)
tokenizer = SentencePieceProcessor(fname_tokenizer)
hparams.update({"vocab_size": tokenizer.vocab_size()})
n_parts = get_n_parts(hparams["dim"])
print(hparams)
print('n_parts = ', n_parts)
##### Set up LoRa ####
RANK = 8
LORA_ALPHA = 16 # https://huggingface.co/tloen/alpaca-lora-7b/blob/431cdc6483f8535d2c745b2d7f8a2fd03df7b6ec/adapter_config.json#L7
LORA_SCALING = LORA_ALPHA / RANK # https://github.com/huggingface/peft/blob/64f63a7df2a02cfd144592d9aa9c871b59258c55/src/peft/tuners/lora.py#LL308C18-L308C52
lora_tensors = {}
lora_wts = torch.load("adapter_model.bin", map_location=torch.device('cpu'))
for key in lora_wts.keys():
lora_tensors[key] = lora_wts[key]
# if key ends with lora_A.weight, and its first dimension is 8, then concat zeros to change first dimension of the torch.tensor to 32
if key.endswith("lora_A.weight") and lora_tensors[key].shape[0] == 8:
shape_0 = lora_tensors[key].shape[0]
shape_1 = lora_tensors[key].shape[1]
zeros = torch.zeros((32 - shape_0, shape_1))
lora_tensors[key] = torch.cat((lora_tensors[key], zeros), 0)
# if key ends with lora_B.weight, and its second dimension is 8, then concat zeros to change second dimension of the torch.tensor to 32
if key.endswith("lora_B.weight") and lora_tensors[key].shape[1] == 8:
shape_0 = lora_tensors[key].shape[0]
shape_1 = lora_tensors[key].shape[1]
zeros = torch.zeros((shape_0, 32 - shape_1))
lora_tensors[key] = torch.cat((lora_tensors[key], zeros), 1)
# Scale the tensors
lora_tensors[key] = lora_tensors[key]
p = 0
print('Processing part ', p)
#fname_model = sys.argv[1] + "/consolidated.00.pth"
fname_model = sys.argv[1] + "/consolidated.0" + str(p) + ".pth"
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin"
if (p > 0):
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin" + "." + str(p)
model = torch.load(fname_model, map_location="cpu")
fout = open(fname_out, "wb")
fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
fout.write(struct.pack("i", hparams["vocab_size"]))
fout.write(struct.pack("i", hparams["dim"]))
fout.write(struct.pack("i", hparams["multiple_of"]))
fout.write(struct.pack("i", hparams["n_heads"]))
fout.write(struct.pack("i", hparams["n_layers"]))
fout.write(struct.pack("i", hparams["dim"] // hparams["n_heads"])) # rot (obsolete)
fout.write(struct.pack("i", ftype))
# Is this correct??
for i in range(tokenizer.vocab_size()):
if tokenizer.is_unknown(i):
# "<unk>" token (translated as ??)
text = " \u2047 ".encode("utf-8")
fout.write(struct.pack("i", len(text)))
fout.write(text)
elif tokenizer.is_control(i):
# "<s>"/"</s>" tokens
fout.write(struct.pack("i", 0))
elif tokenizer.is_byte(i):
# "<U+XX>" tokens (which may be invalid UTF-8)
piece = tokenizer.id_to_piece(i)
if len(piece) != 6:
print("Invalid token: " + piece)
sys.exit(1)
byte_value = int(piece[3:-1], 16)
fout.write(struct.pack("i", 1))
fout.write(struct.pack("B", byte_value))
else:
# normal token. Uses U+2581 (LOWER ONE EIGHTH BLOCK) to represent spaces.
text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8")
fout.write(struct.pack("i", len(text)))
fout.write(text)
for k, v in model.items():
if '.attention.wq.weight' in k: # then the key is of the format "layers.{LAYER_NUMBER}.attention.wq.weight"
# Get the layer number
layer_number = int(k.split('.')[1])
# Get corresponding lora_A tensor 'layers.{LAYER_NUMBER}.self_attn.q_proj.lora_A.weight'
lora_A_tensor = lora_tensors['base_model.model.model.layers.'
+ str(layer_number) + '.self_attn.q_proj.lora_A.weight']
# Get corresponding lora_B tensor 'layers.{LAYER_NUMBER}.self_attn.q_proj.lora_B.weight'
lora_B_tensor = lora_tensors['base_model.model.model.layers.'
+ str(layer_number) + '.self_attn.q_proj.lora_B.weight']
# Merge the two tensors https://github.com/huggingface/peft/blob/64f63a7df2a02cfd144592d9aa9c871b59258c55/src/peft/tuners/lora.py
v += (lora_B_tensor @ lora_A_tensor).T * LORA_SCALING
# Similarly for 'attention.wv.weight'
if '.attention.wv.weight' in k: # then the key is of the format "layers.{LAYER_NUMBER}.attention.wv.weight"
# Get the layer number
layer_number = int(k.split('.')[1])
# Get corresponding lora_A tensor 'layers.{LAYER_NUMBER}.self_attn.v_proj.lora_A.weight'
lora_A_tensor = lora_tensors['base_model.model.model.layers.' +
str(layer_number) + '.self_attn.v_proj.lora_A.weight']
# Get corresponding lora_B tensor 'layers.{LAYER_NUMBER}.self_attn.v_proj.lora_B.weight'
lora_B_tensor = lora_tensors['base_model.model.model.layers.' +
str(layer_number) + '.self_attn.v_proj.lora_B.weight']
# Merge the two tensors https://github.com/huggingface/peft/blob/64f63a7df2a02cfd144592d9aa9c871b59258c55/src/peft/tuners/lora.py
v += (lora_B_tensor @ lora_A_tensor).T * LORA_SCALING
name = k
shape = v.shape
# skip layers.X.attention.inner_attention.rope.freqs
if name[-5:] == "freqs":
continue
print("Processing variable: " + name + " with shape: ", shape, " and type: ", v.dtype)
#data = tf.train.load_variable(dir_model, name).squeeze()
data = v.numpy().squeeze()
n_dims = len(data.shape)
# for efficiency - transpose some matrices
# "model/h.*/attn/c_attn/w"
# "model/h.*/attn/c_proj/w"
# "model/h.*/mlp/c_fc/w"
# "model/h.*/mlp/c_proj/w"
#if name[-14:] == "/attn/c_attn/w" or \
# name[-14:] == "/attn/c_proj/w" or \
# name[-11:] == "/mlp/c_fc/w" or \
# name[-13:] == "/mlp/c_proj/w":
# print(" Transposing")
# data = data.transpose()
dshape = data.shape
# default type is fp16
ftype_cur = 1
if ftype == 0 or n_dims == 1:
print(" Converting to float32")
data = data.astype(np.float32)
ftype_cur = 0
# header
sname = name.encode('utf-8')
fout.write(struct.pack("iii", n_dims, len(sname), ftype_cur))
for i in range(n_dims):
fout.write(struct.pack("i", dshape[n_dims - 1 - i]))
fout.write(sname)
# data
data.tofile(fout)
# I hope this deallocates the memory.
model = None
fout.close()
print("Done. Output file: " + fname_out + ", (part ", p, ")")
print("")