-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpseudo_voigt.m
42 lines (33 loc) · 1.14 KB
/
pseudo_voigt.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
function [y] = pseudo_voigt(x, x0, FWHM_gauss, FWHM_lorentz, varargin)
%PSEUDO_VOIGT calculates a Pseudo-Voigt profile or its n-th derivative.
%
% Returns a Pseudo-Voigt peak with an area normalized to 1 or its n-th
% derivative.
%
% SYNTAX:
% [y] = PSEUDO_VOIGT(x, x0, FWHM_gauss, FWHM_lorentz)
% [y] = PSEUDO_VOIGT(x, x0, FWHM_gauss, FWHM_lorentz, 'deriv', 1)
%
% INPUT:
% x - as x-axis values
% x0 - position of the line center
% FWHM_gauss - FWHM of the Gaussian component
% FWHM_lorentz - FWHM of the Lorentzian component
%
% KEYWORD INPUT:
% 'deriv' - order of derivative to return, defaults to 0
%
% OUTPUT:
% y - voigt profile
%
% $Author: Sam Schott, University of Cambridge <[email protected]>$
import esr_analyses.*
import esr_analyses.utils.*
%%
try n = get_kwarg(varargin, 'deriv'); catch; n = 0; end
f_G = FWHM_gauss;
f_L = FWHM_lorentz;
f = (f_G^5 + 2.69269*f_G^4*f_L + 2.42843*f_G^3*f_L^2 + 4.47163*f_G^2*f_L^3 + 0.07842*f_G*f_L^4 + f_L^5)^(1/5);
eta = 1.36603*(f_L/f) - 0.47719*(f_L/f)^2 + 0.11116*(f_L/f)^3;
y = eta * lorentzian(x, x0, f, 'deriv', n) + (1-eta) * gaussian(x, x0, f, 'deriv', n);
end