-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluation_CL.py
337 lines (295 loc) · 13.3 KB
/
evaluation_CL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
# encoding: utf-8
'''
Copyright 2024 OPPO. All rights reserved.
This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree.
'''
import argparse
import os
import numpy as np
import random
import time
import datetime
import json
from pathlib import Path
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from torch.utils.data import DataLoader
import copy
import logging
import jsonlines
from dataclasses import dataclass, field
from typing import Optional, Dict, Sequence
# modify print function
import builtins as __builtin__
import transformers
from torch.utils.data import Dataset
from transformers import Trainer
import utils
from train import smart_tokenizer_and_embedding_resize, TrainingArguments,DataArguments, ModelArguments
from tqdm import tqdm
from codecs import open
from utils import compute_metric
IGNORE_INDEX = -100
PROMPT_DICT = {
"prompt_input": (
"{instruction}\n\n{input}"
),
"prompt_no_input": (
"{instruction}"
),
}
def save_result(result, result_dir, filename, remove_duplicate=''):
result_file = result_dir+'_%s_rank%d.json'%(filename, torch.distributed.get_rank())
final_result_file = result_dir+'_%s.json'%filename
json.dump(result,open(result_file,'w', encoding="utf-8"), ensure_ascii=False, indent=4)
dist.barrier()
if dist.get_rank() == 0:
# combine results from all processes
result = []
for rank in range(dist.get_world_size()):
result_file = result_dir + '_%s_rank%d.json'%(filename,rank)
res = json.load(open(result_file,'r', encoding="utf-8"))
result += res
# unique all
final_result = {e['idx']: e for e in result}
final = list(final_result.values())
final.sort(key=lambda e: int(e["idx"]))
print("length is:", len(final))
json.dump(final, open(final_result_file,'w', encoding="utf-8"), ensure_ascii=False, indent=4)
print('result file saved to %s'%final_result_file)
return final_result_file
def _tokenize_fn(strings: Sequence[str], tokenizer: transformers.PreTrainedTokenizer) -> Dict:
"""Tokenize a list of strings."""
tokenized_list = [
tokenizer(
text,
return_tensors="pt",
padding="longest",
max_length=tokenizer.model_max_length,
truncation=True,
)
for text in strings
]
input_ids = labels = [tokenized.input_ids[0] for tokenized in tokenized_list]
input_ids_lens = labels_lens = [
tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item() for tokenized in tokenized_list
]
return dict(
input_ids=input_ids,
labels=labels,
input_ids_lens=input_ids_lens,
labels_lens=labels_lens,
)
def preprocess_batch(source, target, tokenizer):
# examples, sources = [source + target], [source]
# examples_tokenized, sources_tokenized = [_tokenize_fn(strings, tokenizer) for strings in (examples, sources)]
sources_tokenized = _tokenize_fn([source], tokenizer)
input_ids = sources_tokenized["input_ids"]
labels = copy.deepcopy(input_ids)
# for i, (label, source_len) in enumerate(zip(labels, sources_tokenized["input_ids_lens"])):
# labels[i][:source_len] = IGNORE_INDEX
return dict(input_ids=input_ids, labels=labels, input_ids_lens=sources_tokenized["input_ids_lens"])
class LazySupervisedDataset(Dataset):
"""Dataset for supervised fine-tuning."""
def __init__(self, data_path, tokenizer: transformers.PreTrainedTokenizer, mode="chat"):
super(LazySupervisedDataset, self).__init__()
self.tokenizer = tokenizer
self.mode = mode
logging.info("Data convert mode: {}".format(mode))
logging.warning("Loading data...")
list_data_dict = utils.jload(data_path)
print("Formatting inputs...Skip in lazy mode")
self.raw_data = list_data_dict
# self.cached_data_dict = {}
self.prompt_input, self.prompt_no_input = PROMPT_DICT["prompt_input"], PROMPT_DICT["prompt_no_input"]
def __len__(self):
return len(self.raw_data)
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
# if i in self.cached_data_dict:
# return self.cached_data_dict[i]
example = self.raw_data[i]
source = self.prompt_input.format_map(example) if example.get("input", "") != "" else self.prompt_no_input.format_map(example)
target = "{}{}".format(example.get('output', ""), self.tokenizer.eos_token)
if self.mode == "instruction":
pass # default
elif self.mode == "chat":
if "Human" not in source and "Assistant" not in source:
source = "Human: {} \n\nAssistant: ".format(source)
ret = preprocess_batch(source, target, self.tokenizer)
ret = dict(
uid = str(i),
input_ids=ret["input_ids"][0],
labels=ret["labels"][0]
# input_ids_lens=ret["input_ids_lens"][0],
)
# self.cached_data_dict[i] = ret
return ret
@dataclass
class DataCollatorForSupervisedDataset(object):
"""Collate examples for supervised fine-tuning."""
tokenizer: transformers.PreTrainedTokenizer
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
uids = [instance["uid"] for instance in instances]
input_ids, labels = tuple([instance[key] for instance in instances] for key in ("input_ids", "labels"))
input_ids = utils.pad_sequence(
input_ids, padding_value=self.tokenizer.pad_token_id, padding_left=self.tokenizer.padding_side=='left'
)
labels = utils.pad_sequence(labels, padding_value=IGNORE_INDEX)
return dict(
uids=uids,
input_ids=input_ids,
labels=labels,
attention_mask=input_ids.ne(self.tokenizer.pad_token_id),
)
@torch.no_grad()
def evaluate(model, data_loader, device, tokenizer):
# evaluate
model.eval()
# config
num_beams = 5
max_length = 2048
do_sample = False
targets = []
sources = []
idxs = []
for i, batch in enumerate(data_loader):
uids = batch.get("uids")
input_ids, attention_mask = batch.get("input_ids").cuda(), batch.get("attention_mask").cuda()
output = model.generate(input_ids=input_ids, attention_mask=attention_mask, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id, do_sample=False, top_k=5, top_p=0.3, temperature=0.9, min_length=1, max_length=2048)
sequence_lens = attention_mask.sum(dim=1)
input_size = input_ids.size()[1]
sources += [tokenizer.decode(e[:input_size], skip_special_tokens=True) for idx, e in enumerate(output)]
targets += [tokenizer.decode(e[input_size:], skip_special_tokens=True) for idx, e in enumerate(output)]
idxs += uids
if i%10 == 0 and dist.get_rank()==0:
print("current step:{} ".format(i))
output = [{"source": src, "target": tgt, "idx": idx} for src, tgt, idx in zip(sources, targets, idxs)]
return output
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--model_name_or_path', default='./checkpoints')
parser.add_argument('--cache_dir', default='./')
parser.add_argument('--input_file', default='input.txt')
parser.add_argument('--output_merge_dir', default='test_tmp')
parser.add_argument('--output_file', default='output.txt')
parser.add_argument('--output_dir', default='tmp')
parser.add_argument('--device', default='cuda')
parser.add_argument('--seed', default=1, type=int)
parser.add_argument('--model_max_length', default=2048, type=int)
parser.add_argument('--mode', default="instruction", type=str, choices=["chat", "instruction"])
parser.add_argument('--world_size', default=8, type=int, help='number of distributed processes')
parser.add_argument('--batch_size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--distributed', default=True, type=bool)
args = parser.parse_args()
# dist.init_process_group(backend='nccl', init_method='env://', timeout=datetime.timedelta(seconds=5400))
local_rank = int(os.getenv("LOCAL_RANK", "0"))
rank = int(os.getenv("RANK", "0"))
world_size = int(os.getenv("WORLD_SIZE", "1"))
torch.distributed.init_process_group(backend="NCCL", init_method=args.dist_url, \
world_size=world_size, rank=rank, timeout=datetime.timedelta(seconds=5400))
# builtin_print = __builtin__.print
# def print(*args, **kwargs):
# force = kwargs.pop('force', False)
# if torch.distributed.get_rank()==0 or force:
# builtin_print(*args, **kwargs)
# __builtin__.print = print
if torch.distributed.is_available() and dist.get_rank() == 0:
print("distribution initlized, world_size-{}".format(torch.distributed.get_world_size()))
device = torch.device(local_rank)
torch.cuda.set_device(device)
torch.distributed.barrier()
# fix the seed for reproducibility
if dist.get_rank() == 0:
print("seed everything")
seed = args.seed + torch.distributed.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
cudnn.benchmark = True
# model input
print("load model ...")
model = transformers.AutoModelForCausalLM.from_pretrained(
args.model_name_or_path,
cache_dir=args.cache_dir,
)
model.config.use_cache=True
print("load tokenizer ...")
tokenizer = transformers.AutoTokenizer.from_pretrained(
args.model_name_or_path,
cache_dir=args.cache_dir,
model_max_length=args.model_max_length,
padding_side="left",
use_fast=False,
)
tokenizer.add_eos_token=False
# tokenizer.pad_token_id = tokenizer.eos_token_id
# tokenizer.pad_token=tokenizer.eos_token
#### Dataset ####
print("Creating dataset")
test_dataset = LazySupervisedDataset(args.input_file, tokenizer, args.mode)
print('dataset length:', len(test_dataset.raw_data))
if args.distributed:
num_tasks = world_size
global_rank = torch.distributed.get_rank()
sampler = torch.utils.data.DistributedSampler(test_dataset, num_replicas=num_tasks, rank=global_rank, shuffle=False)
else:
sampler = None
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer)
test_loader = DataLoader(
test_dataset,
batch_size=args.batch_size,
num_workers=world_size,
pin_memory=True,
sampler=sampler,
shuffle=False,
collate_fn=data_collator,
drop_last=False,
)
print('dataset length:', len(test_loader.dataset.raw_data))
model = model.half().to(device)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[torch.distributed.get_rank()])
model_without_ddp = model.module
test_result = evaluate(model_without_ddp, test_loader, device, tokenizer)
if not os.path.exists(args.output_merge_dir):
os.mkdir(args.output_merge_dir)
# model dir
output_dir_path = os.path.join(args.output_merge_dir, args.output_dir)
if not os.path.exists(output_dir_path):
os.mkdir(output_dir_path)
output_file_path = os.path.join(output_dir_path, args.output_file)
test_result_file = save_result(test_result, output_file_path, 'test')
dist.barrier()
# torch.distributed.barrier()
if dist.get_rank() == 0:
predict_datas = json.load(open(test_result_file, 'r', encoding="utf-8"))
golden_datas = utils.jload(args.input_file)
assert len(predict_datas) == len(golden_datas)
for i, (p, g) in enumerate(zip(predict_datas, golden_datas)):
predict_datas[i]["std_answer"] = g["output"]
with open(os.path.join(output_dir_path, f"{args.output_file}_total.output.json"), 'w', encoding="utf-8") as f:
json.dump(predict_datas, f, indent=4, ensure_ascii=False)
if dist.get_rank() == 0:
rouge_result = utils.compute_metric(test_result_file, args.input_file)
rouge_result_path = f'{args.output_merge_dir}/output_state.jsonl'
item = {}
with jsonlines.open(rouge_result_path, mode='a') as file:
item['data_category'] = args.output_file
item['model_category'] = args.output_dir
item['rouge-1'] = rouge_result['rouge-1']
item['rouge-2'] = rouge_result['rouge-2']
item['rouge-l'] = rouge_result['rouge-l']
jsonlines.Writer.write(file, item)
print(f"save rouge result to: {args.output_merge_dir}/output_state.jsonl")
print(f"{args.output_file}_rouge_result with {args.output_dir}: {rouge_result}")
# setlog.set_logger(f"{output_dir_path}/{args.output_dir}_state.log")
# print(f"save rouge result to: {output_dir_path}/{args.output_dir}_state.log")
# logging.info(f"{args.output_file}_rouge_result with {args.output_dir}: {rouge_result}")
# print("rouge_result: ", rouge_result)
if __name__ == '__main__':
main()