-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_train.sh
66 lines (65 loc) · 2.3 KB
/
run_train.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# arr: task order
# data_dir: train dataset path, modify the dataset path as needed.
# root_model: the base model path, modify your cached model checkpoint path as needed.
arr=('Classification' 'Text_Quality_Evaluation' 'Code' 'Detection' 'Sentiment_Analysis' 'Comprehension' 'Closed_QA' 'Extraction' 'Dialogue' 'Program_Execution' 'Rewriting' 'Open_QA' 'Misc' 'Generation' 'Summarization' 'Mathematics')
data_dir='dataset/train'
root_model='llama_7B'
output_dir='curriculum_model'
nproc=8
train_batch_size=2
max_length=2048
epoch=2
for i in {0..15}
do
if [ $i == 0 ]; then
echo "Load data from ${data_dir}/${arr[i]}.jsonl"
echo "Start training ${arr[i]} on base model!"
torchrun --nproc_per_node=${nproc} --master_port=10034 train_FlashAttn.py \
--model_name_or_path ${root_model} \
--report_to none \
--data_path ${data_dir}/${arr[i]}.jsonl \
--bf16 True \
--output_dir ${output_dir} \
--num_train_epochs ${epoch} \
--per_device_train_batch_size ${train_batch_size} \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--evaluation_strategy "no" \
--save_strategy "no" \
--save_total_limit 2 \
--learning_rate 2e-5 \
--weight_decay 0. \
--warmup_ratio 0.03 \
--model_max_length ${max_length} \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--fsdp "full_shard auto_wrap" \
--fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' \
--tf32 True
continue
fi
echo "Load data from ${data_dir}/${arr[i]}.jsonl"
echo "Start training ${arr[i]} on ${arr[i-1]}_model!"
torchrun --nproc_per_node=${nproc} --master_port=10034 train_mem.py \
--model_name_or_path ${output_dir}/${arr[i-1]} \
--report_to none \
--data_path ${data_dir}/${arr[i]}.jsonl \
--bf16 True \
--output_dir ${output_dir} \
--num_train_epochs ${epoch} \
--per_device_train_batch_size ${train_batch_size} \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--evaluation_strategy "no" \
--save_strategy "no" \
--save_total_limit 2 \
--learning_rate 2e-5 \
--weight_decay 0. \
--warmup_ratio 0.03 \
--model_max_length ${max_length} \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--fsdp "full_shard auto_wrap" \
--fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' \
--tf32 True
done