-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDataset.py
127 lines (112 loc) · 5.6 KB
/
Dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import numpy as np
import tensorflow as tf
import os
import time
from Signal import Signal
class Dataset:
def __init__(self, path, sf, order, bp_lo, bp_hi, notch, window, stride, freq, bw, harms, apply_snr, lab_rels):
self.lab_rels = lab_rels
self.data = []
if type(path) == str:
fname = os.path.basename(path)
name, sess, file_freq, date = fname.replace('.txt', '').split(' ')
if freq is None:
freq = float(file_freq.replace('Hz', ''))
each_signal = Signal(
name.strip(),
int(sess.strip()),
time.strptime(date.strip(), '%Y-%m-%d')
)
each_signal.load_raw(path, self.lab_rels)
each_signal.process(sf, order, bp_lo, bp_hi, notch)
each_signal.make_fvs(window, stride, freq, bw, harms, apply_snr)
self.data.append(each_signal)
else:
for p in path:
fname = os.path.basename(p)
name, sess, file_freq, date = fname.replace('.txt', '').split(' ')
if freq is None:
freq = float(file_freq.replace('Hz', ''))
each_signal = Signal(
name.strip(),
int(sess.strip()),
time.strptime(date.strip().replace('-', ' '), '%Y %m %d')
)
each_signal.load_raw(p, self.lab_rels)
each_signal.process(sf, order, bp_lo, bp_hi, notch)
each_signal.make_fvs(sf, window, stride, freq, bw, harms, apply_snr)
self.data.append(each_signal)
def get_metadata(self):
return [{"name": d.get_subject(), "session": d.get_session(), "date": d.get_date_string()} for d in self.data]
def list_metadata(self):
print('subject\t-\tsession\t-\tdate')
for m in self.get_metadata():
print(f'{m["name"]}\t-\t{m["session"]}\t-\t{m["date"]}')
def get_metadata_strat(self, subjects=None, sessions=None, labels=None):
#for stratification with train_test_split, returns a vector with strings "subjectsession"
#repeated as many times as feature vectors that user and session combination contain
if subjects is not None and type(subjects) != list:
raise ValueError('subjects should be list or None')
if sessions is not None and type(sessions) != list:
raise ValueError('sessions should be list or None')
if labels is not None and type(labels) != list:
raise ValueError('labels should be list or None')
if labels is not None:
labels = self.get_transform_labels(labels)
return np.array([
f'{d.get_subject()}{d.get_session()}' for d in self.data for _ in range(d.get_Y(labels).shape[0]) if (
(True if subjects is None else d.subject in subjects) and
(True if sessions is None else d.session in sessions)
)
])
def get_fv(self, source, channels=None, subjects=None, sessions=None, labels=None):
if channels is not None and type(channels) != list:
raise ValueError('channels should be list or None')
if subjects is not None and type(subjects) != list:
raise ValueError('subjects should be list or None')
if sessions is not None and type(sessions) != list:
raise ValueError('sessions should be list or None')
if labels is not None and type(labels) != list:
raise ValueError('labels should be list or None')
if labels is not None:
labels = self.get_transform_labels(labels)
if source == 'time':
return self.get_fv_time(channels, subjects, sessions, labels)
elif source == 'freq':
return self.get_fv_freq(channels, subjects, sessions, labels)
else:
raise ValueError(f'Invallid source {source}, should be one of time or freq.')
def get_fv_time(self, channels, subjects, sessions, labels):
return np.vstack([
d.get_time_X_stack(channels, labels) for d in self.data if (
(True if subjects is None else d.subject in subjects) and
(True if sessions is None else d.session in sessions)
)
])
def get_fv_freq(self, channels, subjects, sessions, labels):
return np.vstack([
d.get_freq_X_stack(channels, labels) for d in self.data if (
(True if subjects is None else d.subject in subjects) and
(True if sessions is None else d.session in sessions)
)
])
def get_onehot(self, subjects=None, sessions=None, labels=None):
if subjects is not None and type(subjects) != list:
raise ValueError('subjects should be list or None')
if sessions is not None and type(sessions) != list:
raise ValueError('sessions should be list or None')
if labels is not None and type(labels) != list:
raise ValueError('labels should be list or None')
if labels is not None:
labels = self.get_transform_labels(labels)
return np.vstack([
d.get_Y(labels) for d in self.data if (
(True if subjects is None else d.subject in subjects) and
(True if sessions is None else d.session in sessions)
)
])
def get_transform_labels(self, origin):
if type(origin) == list:
return [self.lab_rels[o] for o in origin]
else:
return self.lab_rels[origin]