-
Notifications
You must be signed in to change notification settings - Fork 112
/
Copy pathpreprocess_ssl.py
45 lines (35 loc) · 1.42 KB
/
preprocess_ssl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import os
import argparse
import torch
import librosa
from glob import glob
from tqdm import tqdm
import utils
from wavlm import WavLM, WavLMConfig
def process(filename):
basename = os.path.basename(filename)
speaker = basename[:4]
save_dir = os.path.join(args.out_dir, speaker)
os.makedirs(save_dir, exist_ok=True)
wav, _ = librosa.load(filename, sr=args.sr)
wav = torch.from_numpy(wav).unsqueeze(0).cuda()
c = utils.get_content(cmodel, wav)
save_name = os.path.join(save_dir, basename.replace(".wav", ".pt"))
torch.save(c.cpu(), save_name)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--sr", type=int, default=16000, help="sampling rate")
parser.add_argument("--in_dir", type=str, default="dataset/vctk-16k", help="path to input dir")
parser.add_argument("--out_dir", type=str, default="dataset/wavlm", help="path to output dir")
args = parser.parse_args()
os.makedirs(args.out_dir, exist_ok=True)
print("Loading WavLM for content...")
checkpoint = torch.load('wavlm/WavLM-Large.pt')
cfg = WavLMConfig(checkpoint['cfg'])
cmodel = WavLM(cfg).cuda()
cmodel.load_state_dict(checkpoint['model'])
cmodel.eval()
print("Loaded WavLM.")
filenames = glob(f'{args.in_dir}/*/*.wav', recursive=True)
for filename in tqdm(filenames):
process(filename)