-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathcreate_imdb.py
471 lines (375 loc) · 20.6 KB
/
create_imdb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
"""--------------------------------------------------------------------------------------------------------------------------------------------------
REFERENCE:
----------
Code adapted from Google Tensor FLow Git Hub Repositiory:
https://github.com/tensorflow/models/blob/f87a58cd96d45de73c9a8330a06b2ab56749a7fa/research/inception/inception/data/build_image_data.py
@author: Oluwole Oyetoke
@date: 5th December, 2017
@langauge: Python/TF
@email: [email protected]
INTRODUCTION:
-------------
Converts image dataset to a sharded dataset. The sharded dataset consists of Tensor Flow Records Format (TFRecords) and with Example protos.
train_directory/train-00000-of-01024
train_directory/train-00001-of-01024
...
train_directory/train-01023-of-01024
and
validation_directory/validation-00000-of-00128
validation_directory/validation-00001-of-00128
...
validation_directory/validation-00127-of-00128
EXPECTATIONS:
------------
1. Image data set should be in .jpeg format
2. It is adviced that you have only folders in the base directory containing your training images."
"Base folder-->Subfolders-->Each subfolder containing specific classes of image."
"E.g Training Folder -> stop_sign_folder -> 1.jpg, 2.jpg, 3.jpg....";
(data_dir/label_0/image0.jpeg
(data_dir/label_0/image1.jpg)
3.The sub-directory should be the unique label associated with the images in the folder.
SHARDS CONTENT:
--------------
Where we have selected [x] number of image files per training dataset shard and [y] number of image files per evaluation dataset shard,
for each of the shards, each record within the TFRecord file (shard) is a serialized example proto consisting of the following fields:
image/encoded: string containing JPEG encoded image in RGB colorspace
image/height: integer, image height in pixels
image/width: integer, image width in pixels
image/colorspace: string, specifying the colorspace, always 'RGB'
image/channels: integer, specifying the number of channels, always 3
image/format: string, specifying the format, always 'JPEG'
image/filename: string containing the basename of the image file e.g. 'n01440764_10026.JPEG' or 'ILSVRC2012_val_00000293.JPEG'
image/class/label:integer specifying the index in a classification layer. The label ranges from [0, num_labels] where 0 is unused and left as the background class.
image/class/text: string specifying the human-readable version of the label e.g. 'dog'
If your data set involves bounding boxes, please look at build_imagenet_data.py.
#IMPORTS
-------------------------------------------------------------------------------------------------------------------------------------------------------"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from datetime import datetime
from PIL import Image
from time import sleep
import os
import random
import sys
import threading
import numpy as np
import tensorflow as tf
"""-------------------------------------------------------------------------------------------------------------------------------------------------------"""
# SETTING SOME GLOBAL DATA
"""-------------------------------------------------------------------------------------------------------------------------------------------------------"""
tf.app.flags.DEFINE_string('train_directory', '/home/olu/Dev/data_base/sign_base/training_227x227', 'Training data directory')
tf.app.flags.DEFINE_string('validation_directory', '/home/olu/Dev/data_base/sign_base/training_227x227', 'Validation data directory')
tf.app.flags.DEFINE_string('output_directory', '/home/olu/Dev/data_base/sign_base/output/TFRecord_227x227', 'Output data directory')
tf.app.flags.DEFINE_integer('train_shards', 2, 'Number of shards in training TFRecord files.')
tf.app.flags.DEFINE_integer('validation_shards', 2, 'Number of shards in validation TFRecord files.')
tf.app.flags.DEFINE_integer('num_threads', 2, 'Number of threads to preprocess the images.')
tf.app.flags.DEFINE_string('labels_file', '/home/olu/Dev/data_base/sign_base/labels.txt', 'Labels_file.txt')
tf.app.flags.DEFINE_integer("image_height", 227, "Height of the output image after crop and resize.") #Alexnet takes 227 x 227 image input
tf.app.flags.DEFINE_integer("image_width", 227, "Width of the output image after crop and resize.")
FLAGS = tf.app.flags.FLAGS
""" The labels file contains a list of valid labels are held in this file. The file contains entries such as:
speed_100
speed_120
no_car_overtaking
no_truck_overtaking
Each line corresponds to a label, and each label (per line) is mapped to an integer corresponding to the line number starting from 0.
-------------------------------------------------------------------------------------------------------------------------------------------------------"""
# WRAPPER FOR INSERTING int64 FEATURES int64 FEATURES & BYTES FEATURES INTO EXAMPLES PROTO
"""-------------------------------------------------------------------------------------------------------------------------------------------------------"""
def _int64_feature(value):
if not isinstance(value, list):
value = [value]
return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
def _bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
"""-------------------------------------------------------------------------------------------------------------------------------------------------------"""
#FUNCTION FOR BUILDING A PROTO
"""-------------------------------------------------------------------------------------------------------------------------------------------------------"""
def _convert_to_example(filename, image_buffer, label, text, shape_buffer):
"""Build an Example proto for an example.
Args:
filename: string, path to an image file, e.g., '/path/to/example.JPG'
image_buffer: string, JPEG encoding of RGB image
label: integer, identifier for the ground truth for the network
text: string, unique human-readable, e.g. 'dog'
height: integer, image height in pixels
width: integer, image width in pixels
Returns:
Example proto
"""
colorspace = 'RGB'
channels = 3
image_format = 'JPEG'
#Save TFrecord containing image_bytes, shape [337,337,3], label, text, filename
example = tf.train.Example(features=tf.train.Features(feature={
'image/shape': _bytes_feature(shape_buffer),
'image/class/label': _int64_feature(label),
'image/class/text': _bytes_feature(tf.compat.as_bytes(text)),
'image/filename': _bytes_feature(tf.compat.as_bytes(os.path.basename(filename))),
'image/encoded': _bytes_feature(image_buffer)}))
return example
"""-------------------------------------------------------------------------------------------------------------------------------------------------------"""
#CLASS WIH FUNCTIONS TO HELP ENCODE & DECODE IMAGES
"""-------------------------------------------------------------------------------------------------------------------------------------------------------"""
class ImageCoder(object):
def __init__(self):
# Create a single Session to run all image coding calls.
self._sess = tf.Session()
# Initializes function that converts PNG to JPEG data.
self._png_data = tf.placeholder(dtype=tf.string)
image = tf.image.decode_png(self._png_data, channels=3)
self._png_to_jpeg = tf.image.encode_jpeg(image, format='rgb', quality=100)
# Initializes function that decodes RGB JPEG data.
self._decode_jpeg_data = tf.placeholder(dtype=tf.string)
self._decode_jpeg = tf.image.decode_jpeg(self._decode_jpeg_data, channels=3)
def png_to_jpeg(self, image_data):
return self._sess.run(self._png_to_jpeg,
feed_dict={self._png_data: image_data})
def decode_jpeg(self, image_data):
image = self._sess.run(self._decode_jpeg,
feed_dict={self._decode_jpeg_data: image_data})
assert len(image.shape) == 3
assert image.shape[2] == 3
return image
"""-------------------------------------------------------------------------------------------------------------------------------------------------------"""
# PRE-PROCESS SINGLE IMAGE(Check if PNG, convert to JPEG, confirm conversion)
"""-------------------------------------------------------------------------------------------------------------------------------------------------------"""
def _is_png(filename):
"""Determine if a file contains a PNG format image.
Args:
filename: string, path of the image file.
Returns:
boolean indicating if the image is a PNG.
"""
return '.png' in filename
def _process_image(filename, coder):
"""Process a single image file.
Args:
filename: string, path to an image file e.g., '/path/to/example.JPG'.
coder: instance of ImageCoder to provide TensorFlow image coding utils.
Returns:
image_buffer: string, JPEG encoding of RGB image.
height: integer, image height in pixels.
width: integer, image width in pixels.
"""
#Resize image to networks input size
size=(FLAGS.image_height, FLAGS.image_width)
original_image = Image.open(filename)
width, height = original_image.size
#print('The original image size is {wide} wide x {height} high'.format(wide=width, height=height))
resized_image = original_image.resize(size)
width, height = resized_image.size
#print('The resized image size is {wide} wide x {height} high'.format(wide=width, height=height))
resized_image.save(filename)
#Sleep a bit before file is re-read 5 milliseconds
sleep(0.005)
#ensure that all dataset images have been conveted to .jpeg
image = np.asarray(original_image, np.uint8) #get image data
shape = np.array(image.shape, np.int32) #get image shape
shape_data = shape.tobytes() #convert image shape to bytes
image_data = image.tobytes() # convert image to raw data bytes in the array.
""" ANOTHER METHOD
# Read the image file.
with tf.gfile.FastGFile(filename, 'rb') as f:
image_data = f.read()
# Convert any PNG to JPEG's for consistency.
if _is_png(filename):
print('Converting PNG to JPEG for %s' % filename)
image_data = coder.png_to_jpeg(image_data)
# Decode the RGB JPEG.
image = coder.decode_jpeg(image_data)
# Check that image converted to RGB
assert len(image.shape) == 3
height = image.shape[0]
width = image.shape[1]
assert image.shape[2] == 3"""
return image_data, shape_data
"""-------------------------------------------------------------------------------------------------------------------------------------------------------"""
# PROCESS BATCHES OF IMAGES AS AS EXAMPLE PROTO SAVED TO TFRecord PER SHARD
"""-------------------------------------------------------------------------------------------------------------------------------------------------------"""
def _process_image_files_batch(coder, thread_index, ranges, name, filenames,
texts, labels, num_shards):
"""Processes and saves list of images as TFRecord in 1 thread.
Args:
coder: instance of ImageCoder to provide TensorFlow image coding utils.
thread_index: integer, unique batch to run index is within [0, len(ranges)).
ranges: list of pairs of integers specifying ranges of each batches to
analyze in parallel.
name: string, unique identifier specifying the data set
filenames: list of strings; each string is a path to an image file
texts: list of strings; each string is human readable, e.g. 'dog'
labels: list of integer; each integer identifies the ground truth
num_shards: integer number of shards for this data set.
"""
# Each thread produces N shards where N = int(num_shards / num_threads).
# For instance, if num_shards = 128, and the num_threads = 2, then the first
# thread would produce shards [0, 64).
num_threads = len(ranges)
assert not num_shards % num_threads
num_shards_per_batch = int(num_shards / num_threads) #Same as number of shards per thread
shard_ranges = np.linspace(ranges[thread_index][0],
ranges[thread_index][1],
num_shards_per_batch + 1).astype(int)
num_files_in_thread = ranges[thread_index][1] - ranges[thread_index][0]
counter = 0
for s in range(num_shards_per_batch):
# Generate a sharded version of the file name, e.g. 'train-00002-of-00010'
shard = thread_index * num_shards_per_batch + s
output_filename = '%s-%.5d-of-%.5d' % (name, shard, num_shards)
output_file = os.path.join(FLAGS.output_directory, output_filename)
writer = tf.python_io.TFRecordWriter(output_file)
shard_counter = 0
files_in_shard = np.arange(shard_ranges[s], shard_ranges[s + 1], dtype=int)
for i in files_in_shard:
filename = filenames[i]
label = labels[i]
text = texts[i]
try:
# image_buffer, height, width = _process_image(filename, coder)
image_buffer, shape_buffer = _process_image(filename, coder)
except Exception as e:
print(e)
print('SKIPPED: Unexpected eror while decoding %s.' % filename)
continue
example = _convert_to_example(filename, image_buffer, label,
text, shape_buffer)
writer.write(example.SerializeToString())
shard_counter += 1
counter += 1
if not counter % 1000:
print('%s [thread %d]: Processed %d of %d images in thread batch.' %
(datetime.now(), thread_index, counter, num_files_in_thread))
sys.stdout.flush()
writer.close()
print('%s [thread %d]: Wrote %d images to %s' %
(datetime.now(), thread_index, shard_counter, output_file))
sys.stdout.flush()
shard_counter = 0
print('%s [thread %d]: Wrote %d images to %d shards.' %
(datetime.now(), thread_index, counter, num_files_in_thread))
sys.stdout.flush()
"""-------------------------------------------------------------------------------------------------------------------------------------------------------"""
# PROCESS AND SAVES LIST OF IMAGES AS TFRecord OF EXAMPLE PROTOS (Entire Dataset details sent here)
"""-------------------------------------------------------------------------------------------------------------------------------------------------------"""
def _process_image_files(name, filenames, texts, labels, num_shards):
"""Process and save list of images as TFRecord of Example protos.
Args:
name: string, unique identifier specifying the data set
filenames: list of strings; each string is a path to an image file
texts: list of strings; each string is human readable, e.g. 'dog'
labels: list of integer; each integer identifies the ground truth
num_shards: integer number of shards for this data set.
"""
assert len(filenames) == len(texts)
assert len(filenames) == len(labels)
# Break all images into batches with a [ranges[i][0], ranges[i][1]].
spacing = np.linspace(0, len(filenames), FLAGS.num_threads + 1).astype(np.int)
ranges = []
for i in range(len(spacing) - 1):
ranges.append([spacing[i], spacing[i + 1]])
# Launch a thread for each batch.
print('Launching %d threads for spacings: %s' % (FLAGS.num_threads, ranges))
sys.stdout.flush()
# Create a mechanism for monitoring when all threads are finished.
coord = tf.train.Coordinator()
# Create a generic TensorFlow-based utility for converting all image codings.
coder = ImageCoder()
threads = []
for thread_index in range(len(ranges)):
args = (coder, thread_index, ranges, name, filenames,
texts, labels, num_shards)
#From the entire data set details sent to _process_image_files, convert then to proto examples in batches (per no of threads set) and save as TFRecord
t = threading.Thread(target=_process_image_files_batch, args=args)
t.start()
threads.append(t)
# Wait for all the threads to terminate.
coord.join(threads)
print('%s: Finished writing all %d images in data set.' %
(datetime.now(), len(filenames)))
sys.stdout.flush()
"""-------------------------------------------------------------------------------------------------------------------------------------------------------"""
#BUILD LIST OF ALL IMAGES FILES AND LABELS IN THE DATA SET
"""-------------------------------------------------------------------------------------------------------------------------------------------------------"""
def _find_image_files(data_dir, labels_file):
"""
Args:
data_dir: string, path to the root directory of images.
Assumes that the image data set resides in JPEG files located in
the following directory structure.
data_dir/dog/another-image.JPEG
data_dir/dog/my-image.jpg
where 'dog' is the label associated with these images.
labels_file: string, path to the labels file.
The list of valid labels are held in this file. Assumes that the file
contains entries as such:
dog
cat
flower
where each line corresponds to a label. We map each label contained in
the file to an integer starting with the integer 0 corresponding to the
label contained in the first line.
Returns:
filenames: list of strings; each string is a path to an image file.
texts: list of strings; each string is the class, e.g. 'dog'
labels: list of integer; each integer identifies the ground truth.
"""
print('Determining list of input files and labels from %s ' % labels_file)
unique_labels = [l.strip() for l in tf.gfile.FastGFile(
labels_file, 'r').readlines()]
labels = []
filenames = []
texts = []
# Leave label index 0 empty as a background class.
label_index = 1
# Construct the list of JPEG files and labels.
for text in unique_labels:
jpeg_file_path = '%s/%s/*' % (data_dir, text)
print("File path %s \n" % jpeg_file_path);
matching_files = tf.gfile.Glob(jpeg_file_path)
labels.extend([label_index] * len(matching_files))
texts.extend([text] * len(matching_files))
filenames.extend(matching_files)
if not label_index % 100:
print('Finished finding files in %d of %d classes.' % (
label_index, len(labels)))
label_index += 1
# Shuffle the ordering of all image files in order to guarantee
# random ordering of the images with respect to label in the
# saved TFRecord files. Make the randomization repeatable.
shuffled_index = list(range(len(filenames)))
random.seed(12345)
random.shuffle(shuffled_index)
filenames = [filenames[i] for i in shuffled_index]
texts = [texts[i] for i in shuffled_index]
labels = [labels[i] for i in shuffled_index]
print('Found %d JPEG files across %d labels inside %s' %
(len(filenames), len(unique_labels), data_dir))
return filenames, texts, labels
"""-------------------------------------------------------------------------------------------------------------------------------------------------------"""
#CALL TO PROCESS DATASET IS MADE HERE
"""-------------------------------------------------------------------------------------------------------------------------------------------------------"""
def _process_dataset(name, directory, num_shards, labels_file):
"""Process a complete data set and save it as a TFRecord.
Args:
name: string, unique identifier specifying the data set.
directory: string, root path to the data set.
num_shards: integer number of shards for this data set.
labels_file: string, path to the labels file.
"""
filenames, texts, labels = _find_image_files(directory, labels_file) #Build list of dataset image file (path to them) and their labels as string and integer
_process_image_files(name, filenames, texts, labels, num_shards) #Process the entire list of images in the dataset into a TF record
"""-------------------------------------------------------------------------------------------------------------------------------------------------------"""
#MAIN
"""-------------------------------------------------------------------------------------------------------------------------------------------------------"""
def main(unused_argv):
assert not FLAGS.train_shards % FLAGS.num_threads, ('Please make the FLAGS.num_threads commensurate with FLAGS.train_shards')
assert not FLAGS.validation_shards % FLAGS.num_threads, ('Please make the FLAGS.num_threads commensurate with ''FLAGS.validation_shards')
print('Result will be saved to %s' % FLAGS.output_directory)
# Run it!
_process_dataset('validation', FLAGS.validation_directory, FLAGS.validation_shards, FLAGS.labels_file)
_process_dataset('train', FLAGS.train_directory, FLAGS.train_shards, FLAGS.labels_file)
if __name__ == '__main__':
tf.app.run()
"""-------------------------------------------------------------------------------------------------------------------------------------------------------"""