
OGER: OntoGene’s Entity Recogniser in the
BeCalm TIPS Task

Lenz Furrer and Fabio Rinaldi

University of Zurich, Institute of Computational Linguistics
Andreasstr. 15, CH-8050 Zürich, Switzerland

{furrer,rinaldi}@cl.uzh.ch

Abstract. We present OGER, an annotation service built on top of
OntoGene’s biomedical entity recognition system, which participates in
the TIPS task (technical interoperability and performance of annota-
tion servers) of the BeCalm (biomedical annotation metaserver) chal-
lenge. The annotation server is a web application tailored to the needs of
the task, using an existing biomedical entity recognition suite. The core
annotation module uses a knowledge-based strategy for term matching
and entity linking. The server’s architecture allows parallel processing of
annotation requests for an arbitrary number of documents from mixed
sources. In the discussion, we show that network latency is responsible
for significant overhead in the measurement of processing time. We com-
pare the preliminary key performance indicators with an analysis drawn
from the server’s log messages. We conclude that our annotation server
is ready for the upcoming phases of the TIPS task.

Key words: knowledge-based named entity recognition, biomedical en-
tity linking, parallel processing

1 Introduction

The technical interoperability and performance of annotation servers (TIPS) task
[4] is part of the biomedical annotation metaserver (BeCalm) challenge [3]. Par-
ticipants are asked to build a web service for annotating biomedical entities in
given documents on the fly. The goal of the task is to build a fast and reliable an-
notation server, which can act as a contractor in an inter-universitary biomedical
annotation cloud.

2 System description and methods

In the following, we describe OGER, an annotation server built on top of the
OntoGene entity recognition suite.

175

● load
● annotate
● format

● load
● annotate
● format

● load
● annotate
● format

REST API

. . .

● combine
● send

main process

n workers

sending worker

getAnnotations request
from BeCalm

saveAnnotations request
to BeCalm

fetch request to
NCBI or BeCalm

JSON payload
[{"doc": "26571342",
 "source": "PUBMED"}, ...]

TSV, XML or JSON
payload

Fig. 1. System architecture of the annotation server.

2.1 Environment

The OGER annotation server is hosted on our institute’s server infrastructure.
It is run on a virtual machine (VM) dedicated to services. This VM has a high
priority regarding the distribution of processing time among all VMs running
on the same machine. It features 128G of RAM (allocated exclusively to the
service VM) and 16 CPUs (shared with other VMs). The operating system is
the Debian-based Proxmox Virtual Environment. Incoming HTTPS requests are
redirected to the annotation server by an Nginx reverse proxy server.

2.2 Annotation server architecture

The OGER annotation server is written in Python. Besides the standard library,
we used two third-party libraries. The micro web-framework Bottle1 is used to
implement the REST API. XML parsing and serialising is performed through
lxml.2

An overview of the system architecture is given in Figure 1. In order to al-
low a high processing capacity without blocking the API, the annotation server
supports parallel processing. The main process runs the REST API, listening
to incoming requests. Quick operations are handled directly, such as respond-
ing to the getServerState request or sending an acknowledgment response.
A number3 of annotation subprocesses (workers) are responsible for handling

1 http://bottlepy.org/
2 http://lxml.de/
3 The number of annotation workers is fixed when the server is (re-)started. Through-
out phase 1 of TIPS, we used 5 workers.

Proceedings of the BioCreative V.5 Challenge Evaluation Workshop

176

the getAnnotations requests. Each worker runs a separate instance of the
term annotation pipeline (see Section 2.3). A separate subprocess (the send-
ing worker) receives the extracted annotations from all annotation workers. It
concatenates them (if necessary) and issues a saveAnnotations request to Be-
Calm’s Metaserver. Finally, another subprocess (not shown in Fig. 1) collects
processing errors and other incidents. These problem reports are sent by email
to the person in charge of maintaining the server.

The annotation workers operate on a batch basis. Every batch consists of a
list of document IDs and a source specifier, referring to one of PubMed, PubMed
Central, BeCalm’s abstract server, or BeCalm’s patent server. The requested
documents are obtained from their respective remote source, using either NCBI’s
efetch or BeCalm’s REST API. Both interfaces allow an unlimited number of
documents to be requested at once, which means that the entire batch can be
retrieved through a single request. Upon retrieval, the documents are converted
to a unified internal representation and passed to the entity recogniser. The
extracted annotations of the whole batch are accumulated and serialised into
the required output format (BeCalm JSON, BeCalm TSV, or BioC XML).4 The
formatted annotations are then pushed to the sending worker.

The annotation workers can only handle documents from a single source per
batch. Therefore, if an annotation request asks for documents from different
sources,5 the main process groups the documents by source and creates multiple
batches. For example, for a 10-document request, it would initiate a batch of
5 documents to be fetched from PubMed, and another batch of 5 abstracts to
be requested from BeCalm’s patent server. The batches are then processed in
parallel by separate workers. This parallelisation results in a speed benefit even
for small batches, since the network-related waiting times do not add up (as they
would in a fully sequential approach).

The sending worker, finally, ensures that there is exactly one saveAnno-

tations request for each getAnnotations request. If an incoming request was
split up into multiple batches, it waits for the formatted annotations from each
batch to be completed and merges them into a single structure before sending
them to the Metaserver. The concatenation of multiple batches needs some care,
in that certain structural elements must not be repeated: In TSV format, the
headers may only occur once. In JSON, the top-level array must span the entire
collection using a single pair of brackets. Similarly, in XML, there can only be
one root node, and BioC’s collection-level metadata may not be repeated.

4 Currently, the output format is specified through the server configuration and cannot
be changed without restarting the server. However, the API could easily be changed
to accept the output format as a parameter.

5 This was never the case in phase 1 of TIPS, as all requests asked for a single document
only. However, we successfully tested this functionality with private requests through
BeCalm’s web interface.

177

2.3 OntoGene term annotation pipeline

The OntoGene term annotation pipeline is a knowledge-based concept recogni-
tion system for biomedical entities. Designed for information extraction systems
targeting scientific literature, it has been successfully applied to a range of entity
types (genes/proteins, chemicals, diseases, among others [7, 8, 5, 6]). It has been
recently reimplemented in Python as an integral processing suite [2], replacing
the former amalgamation of modules written in various programming languages,
communicating through a multitude of intermediate files written on disk. While
the new pipeline provides a command-line interface with a lot of flexibility, we
used it as a Python library for the annotation server.

As a knowledge-based system, the core recognition procedure relies on a list of
target terms, which are connected to entity identifiers. The coverage of matching
term variants is raised through a series of preprocessing steps with a normalising
effect, such as an aggressive, lossy tokenisation strategy which collapses spelling
alternations like e. g. “SRC1”/“SRC 1”/“SRC-1” into the same representation.
A more detailed description of the annotation process can be found in [1].

For the present work, we used the following terminology resources (with their
respective entity types):

– Cellosaurus (cell lines)6

– Comparative Toxicogenomics Database (CTD) (chemicals, diseases)7

– Gene Ontology (cellular components only, labelled “subcellular structure”
in TIPS)8

– NCBI Taxonomy (organisms)9

These resources were aggregated and converted to a unified format using the Bio
Term Hub.10 Due to the highly flexible design of the system, the range of sup-
ported entity types can be extended very easily. By simply including additional
terminology resources, more target entities can be covered.

3 Discussion

At the time of writing, only the key performance indicators are available. Also,
global results have not been released, meaning that each participating group
only sees results for their own system(s).

3.1 Performance

According to the statistics in the participant area of BeCalm’s web interface,
the key performance indicators for our system are as follows:

6 http://web.expasy.org/cellosaurus/
7 http://ctdbase.org/
8 http://geneontology.org/
9 https://www.ncbi.nlm.nih.gov/taxonomy

10 http://pub.cl.uzh.ch/purl/biodb/

Proceedings of the BioCreative V.5 Challenge Evaluation Workshop

178

MAD 14.7923

MPDV 0.0119

MTDV 0.00086 s

MTSA 0.07227 s

ART 1.06943 s

The first two indicators (MAD and MPDV) hint at the sensitivity of the
annotation server, as they represent the number of annotations per document
and per Byte of a document, respectively. Without evaluating the correctness
of the annotations, however, it is not clear what conclusions can be drawn from
these figures. MAD might help put the other performance indicators in context
(MTSA, in particular).

The other three indicators (MTDV, MTSA, ART) are very similar, in that
they represent the average time needed to process one Byte of a document, one
annotation, and one document, respectively. In our analysis, we will focus on
ART, the time needed to process a document.

Based on previous experience with our annotation pipeline, an average pro-
cessing time of more than a second per document seems exceptionally high.
Especially when processing abstracts, we expect the annotation process to be
faster by two or three orders of magnitude. It is thus important to understand
how the processing time is measured.

In phase 1 of TIPS, all requests were concerned with a single document
only. This means that the processing overhead (handling network connections,
communication between subprocesses) per document is maximal. Indeed, the
proportion of overhead in the total processing time is substantial: Using the
BeCalm web interface, we triggered private requests with either one or ten doc-
uments to be annotated. In this (non-representative) test, the observed time
difference between the two request sizes was negligible; there were even counter-
intuitive examples, where a 10-document request was processed in less time than
a single-document request.

Figure 2 shows all major processing steps that contribute to the total time
of completing one request (which equals the response time for one document
in phase 1 of TIPS). While we do not know the exact details of how the task
organisers define the processing time, the depicted interpretation of start and
end point is our best guess based on the documentation and on email conversa-
tions with the BeCalm team. The figure shows clearly that each request involves
three separate network connections (hatched boxes). Compared to annotating
an abstract as short as several hundred characters, we estimate the time contri-
bution of the network latency to be inordinate. It is therefore difficult to draw
meaningful conclusions from ART.

As another concern, the choice of measuring mean time has a strong bias
for statistical outliers on the positive side. For example, if a single request (for
whatever reason) takes 100 times longer to complete than the typical case, this
has a much larger impact on the mean time than the inverse would have an
unbelievably fast request that is 100 times faster than the typical case. Measuring

179

Metaserver sends request
reverse proxy rewrites route

web framework creates Python representation
main process delegates to worker

main process sends HTTP response
worker sends fetch request to SOURCE

worker receives documents
worker converts documents to internal format

worker annotates documents
worker formats annotations

worker sends annotations to Metaserver
Metaserver validates and saves annotationst

total pr ocessing tim
e

log-base d analy sis

Contribution to total processing time:

depends on
network traffic

depends on
document volume

fixed
overhead

does not
contribute

Fig. 2. Individual processing steps and their contribution to the total processing time.

median time, however, is much more robust in this scenario, as it gives more of
an impression of the typical processing time.

Moreover, statistical outliers can have a negative effect on the expressiveness
of the ART measure. If a few requests take many times longer than usual to
complete, this is most likely due to a technical incident, such as a network prob-
lem or a server component being temporarily unavailable, causing a delay before
the request can be processed or responded. Thus, we argue that outliers re-
flect aspects of the server’s reliability, rather than its performance under normal
conditions. Therefore we think that they should be captured by the reliability
metrics rather than ART/MTSA/MTDV.

For these reasons, we carried out an alternative analysis of processing time
based on the logs of our annotation server. The analysis covers the period starting
on February 20, 2017, 11:51 CET until the end of phase 1 on March 31. We
excluded all private requests from the analysis as well as all requests received on
March 6, since on that day electrical power cuts caused BeCalm’s infrastructure
to malfunction. To our understanding, these data are also excluded from the
official evaluation. Based on the total number of requests given in BeCalm’s web
interface (314 539 requests), there is a substantial overlap between the data sets.

Table 1 shows the results of our log-based analysis. Instead of measuring all
steps involved in an annotation request, we restricted the analysis to the steps
at the core of the annotation process. The measured period starts with the first
log entry for a request, which is written immediately after the web-framework
has preprocessed an incoming request, and ends with the last log message which
is written just before sending back the formatted annotations (see the span
labelled “log-based analysis” in Figure 2). Thus, the analysed periods span only

Proceedings of the BioCreative V.5 Challenge Evaluation Workshop

180

Table 1. Processing time analysis based on the server logs. All time measurements are
in seconds.

requests min. max. average median std. dev.

PubMed 100 332 0.424 78.154 0.540 0.526 0.440
Abstract server 130 206 0.079 167.037 0.170 0.099 1.854
Patent server 36 945 0.079 13.671 0.103 0.096 0.144
all 267 483 0.079 167.037 0.300 0.111 1.336

one of the three network connections involved in a complete cycle. The start and
end point of each request were obtained by parsing the log messages, which are
printed with millisecond precision.

The most evident finding is that disregarding the initial and final network
connections substantially reduces the measured time span: The average pro-
cessing time of all requests (last row) is 300ms, rather than 1069ms (ART).
The median processing time is again much lower (111ms). It is also interesting
to see the differences by origin: Fetching and processing a PubMed abstracts
takes considerably longer (540ms on average) than to BeCalm’s abstract (170)
and patent server (103). A possible explanation for this discrepancy is the fact
that we obtain PubMed abstracts in XML format, while BeCalm provides the
abstracts in a flat JSON structure, which is much more lightweight. Another
observation is that PubMed abstracts tend to be larger in terms of file size (if
only for the additional markup), which might have an impact on transmission
time. It might also be that the NCBI servers are simply busier than BeCalm’s
in terms of network traffic.

Another conclusion that can be drawn from these statistics is that parallel
processing did not pay off in phase 1 of TIPS, which is no surprise. In busy
times, the Metaserver issued a request every 2 to 10 seconds. Thus, most of the
time, when a new request arrived, the previous one had long been completed,
meaning that the “parallel” annotation workers almost never worked in parallel
effectively.

3.2 Conclusion

In the current evaluation, where each request asked for a single document only, it
is hard to measure the speed of the annotation process. The task’s protocol with
three separate network connections for each annotation request entails significant
overhead. In future phases of TIPS, where multiple documents per request, larger
documents (full-text) and simultaneous requests will be required, our annotation
server will be able to better show its strengths. The OGER annotation server is
ready now for phases 2 through 4!

References

1. Basaldella, M., Furrer, L., Colic, N., Ellendorff, T.R., Tasso, C., Rinaldi, F.: Using
a hybrid approach for entity recognition in the biomedical domain. In: Neves, M.,

181

Rinaldi, F., Nenadic, G., Rebholz-Schuhmann, D. (eds.) Proceedings of the 7th
International Symposium on Semantic Mining in Biomedicine. pp. 11–19. Potsdam,
Germany (2016), http://dx.doi.org/10.5167/uzh-125712

2. Colic, N.: Dependency Parsing for Relation Extraction in Biomedi-
cal Literature. Master’s thesis, University of Zurich, Switzerland (2016),
http://www.cl.uzh.ch/dam/jcr:609b8c4a-5d9f-4e4b-99a9-69355027509d/

Master_Thesis_Nicola_Colic.pdf

3. Krallinger, M., Pérez, M.P., Rabal, O., Pérez Rodŕıguez, G., Vazquez, M.,
Fdez-Riverola, F., Oyarzabal, J., Lourenco, A., Valencia, A.: The BioCreative
V.5/BeCalm evaluation workshop: tasks, organization, sessions and topics. In: Pro-
ceedings of the BioCreative V.5 Challenge Evaluation Workshop. pp. 1–2 (2017)

4. Pérez-Pérez, M., Pérez-Rodŕıguez, G., Blanco-Mı́guez, A., Fdez-Riverola, F., Va-
lencia, A., Krallinger, M., Lourenco, A.: Benchmarking biomedical text mining web
servers at BioCreative V.5: the technical interoperability and performance of an-
notation servers – TIPS track. In: Proceedings of the BioCreative V.5 Challenge
Evaluation Workshop. pp. 12–21 (2017)

5. Rinaldi, F., Clematide, S., Hafner, S.: Ranking of CTD articles and interactions
using the OntoGene pipeline. In: Proceedings of the 2012 BioCreative workshop.
Washington D.C. (April 2012), https://doi.org/10.5167/uzh-62066

6. Rinaldi, F., Clematide, S., Marques, H., Ellendorff, T., Rodriguez-Esteban, R., Ro-
macker, M.: OntoGene web services for biomedical text mining. BMC Bioinformatics
15(14) (2014), http://dx.doi.org/10.1186/1471-2105-15-S14-S6

7. Rinaldi, F., Kappeler, T., Kaljurand, K., Schneider, G., Klenner, M., Clematide,
S., Hess, M., von Allmen, J.M., Parisot, P., Romacker, M., Vachon, T.: OntoGene
in BioCreative II. Genome Biology 9(2), S13 (2008), http://dx.doi.org/10.1186/
gb-2008-9-s2-s13

8. Rinaldi, F., Schneider, G., Kaljurand, K., Clematide, S., Vachon, T., Romacker,
M.: OntoGene in BioCreative II.5. IEEE/ACM Transactions on Computational Bi-
ology and Bioinformatics 7(3), 472–480 (Juli 2010), http://dx.doi.org/10.5167/
uzh-46282

Proceedings of the BioCreative V.5 Challenge Evaluation Workshop

182

	papers-merge
	24-BC55_paper_23

