-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_t5_fp16_ddp_two_dev.py
492 lines (423 loc) · 20.8 KB
/
train_t5_fp16_ddp_two_dev.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
import sys
import argparse
import torch
import torch.nn as nn
import src as om
from src.utils import init_logger, optimizer_to, save_trec, get_mrr, set_dist_args, merge_resfile, DistributedEvalSampler, ListwiseLoss, clean_dict_name
from transformers import get_linear_schedule_with_warmup, T5Tokenizer
torch.multiprocessing.set_sharing_strategy('file_system')
import logging
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel
import torch.distributed as dist
from contextlib import nullcontext
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
def dev(args, model, dev_loader):
rst_dict = {}
for dev_batch in dev_loader:
query_ids, doc_ids, labels = dev_batch['query_ids'], dev_batch['doc_ids'], dev_batch['labels']
input_id_list = dev_batch['input_ids'] # bs * 100 * 384
attention_mask_list = dev_batch['attention_mask'] # bs * 100 * 384
score_token_ids = None
score_memory = None
if args.add_score and args.score_embedding:
score_memory = torch.tensor(dev_batch['score_memory']).to(args.device) # 100
if args.add_score or args.relieve_CLS:
score_token_ids = torch.tensor(dev_batch['score_token_ids']).to(args.device) # 100
for i in range(args.dev_batch_size):
with torch.no_grad():
with torch.cuda.amp.autocast():
batch_score = model(
input_ids=input_id_list[i,:,:],
attention_mask=attention_mask_list[i,:,:],
score_token_ids=score_token_ids[i,:] if score_token_ids is not None else None,
score_memory=score_memory[i,:] if score_memory is not None else None,
)
if args.loss == 'BCE':
batch_score = batch_score[:,0].detach().cpu().tolist()
elif args.loss == 'CE' or args.loss == 'list-wise':
#batch_score = batch_score[:,1].detach().cpu().tolist()
batch_score = batch_score[:,1176].detach().cpu().tolist()
#batch_score_softmax = torch.softmax(batch_score[:,1].view(-1), dim=0).detach().cpu().tolist()
#batch_score_softmax = torch.softmax(batch_score[:,1176].view(-1), dim=0).detach().cpu().tolist()
for (q_id, d_id, b_s, l) in zip(query_ids[i], doc_ids[i], batch_score, labels[i]):
if q_id not in rst_dict:
rst_dict[q_id] = {}
if d_id not in rst_dict[q_id] or b_s > rst_dict[q_id][d_id][0]:
rst_dict[q_id][d_id] = [b_s, l]
return rst_dict, batch_score
def train(args, logger, model, m_optim, m_scheduler, train_loader, dev_loader, test_loader, loss_fn, train_sampler=None):
writer = SummaryWriter(log_dir=args.log_dir)
best_mes = 0.0
best_mes_test = 0.0
global_step = 0
avg_loss = 0.0
scaler = torch.cuda.amp.GradScaler()
for epoch in range(args.epoch):
logger.info('start epoch for {}'.format(epoch))
if args.local_rank != -1:
train_sampler.set_epoch(epoch)
for step, train_batch in enumerate(train_loader):
input_id_list = train_batch['input_ids'].to(args.device) # 100 * 384
attention_mask_list = train_batch['attention_mask'].to(args.device) # 100 * 384
label_list = torch.tensor(train_batch['raw_labels']).to(args.device) # 100
score_token_ids = None
score_memory = None
if args.add_score and args.score_embedding:
score_memory = torch.tensor(train_batch['score_memory']).to(args.device) # 100
if args.add_score or args.relieve_CLS:
score_token_ids = train_batch['score_token_ids'].to(args.device) # 100
for i in range(args.batch_size):
with torch.cuda.amp.autocast():
sync_context = model.no_sync if (args.local_rank != -1 and (step+1) % args.gradient_accumulation_steps != 0) else nullcontext
with sync_context():
batch_score = model(
input_ids=input_id_list[i,:,:],
attention_mask=attention_mask_list[i,:,:],
score_token_ids=score_token_ids[i,:] if score_token_ids is not None else None,
score_memory=score_memory[i,:] if score_memory is not None else None,
)
if args.loss.lower() == "bce":
label_tensor = label_list[i,:args.doc_size].repeat(args.doc_size, 1)
label_tensor = label_tensor.to(args.device)
mask = label_tensor - label_tensor.t()
score_tensor = batch_score[:args.doc_size,0].squeeze(-1).repeat(args.doc_size, 1)
diff_tensor = score_tensor - score_tensor.t()
diff_score = diff_tensor[mask > 0]
batch_loss = loss_fn(torch.sigmoid(diff_score), torch.ones(diff_score.size()).to(args.device))
elif args.loss.lower() == "ce":
#print(batch_score[:args.doc_size,:])
#print(label_list[i,:args.doc_size])
#print(batch_score[:args.doc_size,[6136, 1176]])
#batch_loss = loss_fn(batch_score[:args.doc_size,:], label_list[i,:args.doc_size])
batch_loss = loss_fn(batch_score[:args.doc_size,[6136, 1176]], label_list[i,:args.doc_size])
elif args.loss.lower() == "list-wise":
batch_loss = loss_fn(batch_score[:args.doc_size,[6136, 1176]], label_list[i,:args.doc_size])
if args.n_gpu > 1:
batch_loss = batch_loss.mean()
if args.gradient_accumulation_steps > 1:
batch_loss = batch_loss / args.gradient_accumulation_steps
avg_loss += batch_loss.item()
with sync_context():
scaler.scale(batch_loss).backward()
# logging train and evaluation
if (step+1) % args.gradient_accumulation_steps == 0:
scaler.unscale_(m_optim)
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
scaler.step(m_optim)
scaler.update()
m_optim.zero_grad()
m_scheduler.step()
if args.logging_step > 0 and ((global_step+1) % args.logging_step == 0):
dist.barrier()
avg_loss /= args.logging_step*args.batch_size
if args.local_rank in [-1, 0]:
logger.info("global step: {}, local step: {}, loss: {}".format(global_step+1, (step+1) * args.world_size, avg_loss))
writer.add_scalar("loss", avg_loss, global_step)
dist.barrier()
avg_loss = 0.0
if (global_step+1) % args.eval_every == 0:
model.eval()
dist.barrier()
rst_dict, _ = dev(args, model, dev_loader)
rst_dict_test, _ = dev(args, model, test_loader)
dist.barrier()
model.train()
if args.local_rank != -1:
save_trec(args.res + "_rank_{:03}".format(args.local_rank), rst_dict)
dist.barrier()
save_trec(args.res_test + "_rank_{:03}".format(args.local_rank), rst_dict_test)
if args.local_rank in [-1,0]:
merge_resfile(args.res + "_rank_*", args.res + "_step-{}".format(global_step+1))
dist.barrier()
if args.local_rank in [-1,0]:
merge_resfile(args.res_test + "_rank_*", args.res_test + "_step-{}".format(global_step+1))
dist.barrier()
else:
save_trec(args.res + "_step-{}".format(global_step+1), rst_dict)
save_trec(args.res_test + "_step-{}".format(global_step+1), rst_dict_test)
mes = get_mrr(args.qrels, args.res + "_step-{}".format(global_step+1), args.metric)
mes_test = get_mrr(args.qrels_test, args.res_test + "_step-{}".format(global_step+1), args.metric)
saved = False
if mes >= best_mes:
best_mes = mes
if mes_test >= best_mes_test:
best_mes_test = mes_test
"""if mes >= best_mes:
best_mes = mes
logger.info('Saving best model at step {}'.format(global_step+1))
torch.save(model.state_dict(), args.save + "_step-{}.bin".format(global_step+1))
saved=True"""
#if (global_step+1) % (4 * args.eval_every / args.gradient_accumulation_steps) == 0:
if (global_step+1) % args.eval_every == 0:
logger.info('Saving model at step {}'.format(global_step+1))
torch.save(model.state_dict(), args.save + "_step-{}.bin".format(global_step+1))
saved = False
logger.info("global step: {}, messure: {}, best messure: {}, test messure: {}, test best messure: {}".format(global_step+1, mes, best_mes, mes_test, best_mes_test))
writer.add_scalar('dev', mes, global_step)
writer.add_scalar('test', mes_test, global_step)
global_step += 1
return
def main():
ckpt="t5-base"
parser = argparse.ArgumentParser()
# training setup
parser.add_argument('-optimizer', type=str, default='adamw')
parser.add_argument("-doc_size", type=int, default = 10)
parser.add_argument("-use_global", action='store_true', default = False)
parser.add_argument("-grad_detach", action='store_true', default = False)
parser.add_argument('-config', type=str, default=ckpt)
parser.add_argument('-tokenizer', type=str, default=ckpt)
parser.add_argument('-pretrained', type=str, default=ckpt)
parser.add_argument('-loss', type=str, default="ce")
# ddp
parser.add_argument('--no_cuda', action='store_true', default=False)
parser.add_argument('--local_rank', type=int, default=-1) # for distributed mode
parser.add_argument( "--server_ip",type=str,default="", help="For distant debugging.",)
parser.add_argument( "--server_port",type=str, default="",help="For distant debugging.",)
# dataset
parser.add_argument('-train', action=om.utils.DictOrStr, default='../data_new/train_366000.json')
parser.add_argument('-dev', action=om.utils.DictOrStr, default='../data_new/dev_914.json')
parser.add_argument('-test', action=om.utils.DictOrStr, default='../data_new/dev_914.json')
parser.add_argument('-qrels', type=str, default='/home/jindavid/data/msmarco-docdev-qrels.tsv')
parser.add_argument('-qrels_test', type=str, default='/home/jindavid/data/msmarco-docdev-qrels.tsv')
parser.add_argument('-max_input', type=int, default=1280000)
parser.add_argument('-max_query_len', type=int, default=64)
parser.add_argument('-max_seq_len', type=int, default=512)
# training parameters
parser.add_argument('-epoch', type=int, default=1)
parser.add_argument('-batch_size', type=int, default=1)
parser.add_argument('-lr', type=float, default=5e-4)
parser.add_argument('-n_warmup_steps', type=int, default=4000)
parser.add_argument("-max_steps", type=int)
parser.add_argument('-gradient_accumulation_steps', type=int, default=1)
parser.add_argument("-max_grad_norm", default=1.0,type=float, help="Max gradient norm.")
# logging and saving
parser.add_argument('-eval_every', type=int, default=10000)
parser.add_argument('-dev_batch_size', type=int, default=1)
parser.add_argument('-logging_step', type=int, default=100)
parser.add_argument("-log_dir", type=str)
parser.add_argument('-save', type=str, default='./checkpoints/t5.bin')
parser.add_argument('-res', type=str, default='ru/home/jindavid/checkpoints/$Namens/t5.trec')
parser.add_argument('-res_test', type=str, default='ru/home/jindavid/checkpoints/$Namens/t5.trec')
parser.add_argument('-metric', type=str, default='mrr_cut_100')
parser.add_argument('-num_global_layers', type=int, default=3)
parser.add_argument('-retraining', action='store_true', default=False)
parser.add_argument('-add_score', action='store_true', default = False)
parser.add_argument('-add_rank', action='store_true', default = False)
parser.add_argument('-add_bin', action='store_true', default = False)
parser.add_argument('-relieve_CLS', action='store_true', default = False)
parser.add_argument('-number_bin', action='store_true', default = False)
parser.add_argument('-score_embedding', action='store_true', default = False)
args = parser.parse_args()
init_logger(args)
device = args.device
filename = args.log_dir + 'run.log'
handlers = [logging.StreamHandler(sys.stdout)]
if filename is not None:
handlers.append(logging.FileHandler(filename=filename))
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
handlers=handlers,
)
logger = logging.getLogger(__name__)
set_dist_args(args)
tokenizer = T5Tokenizer.from_pretrained(args.tokenizer, model_max_length=512)
tokenizer.add_tokens("[CLS]", special_tokens=True) #extra_id_-1
bin_tokens = None
if args.add_bin == True:
bin_tokens = []
for i in range(100):
bin_tokens.append("<extra_id_{}>".format(i)) #t5 unuse token
tokenizer.add_tokens("<extra_id_100>", special_tokens=True) #extra_id_-2
bin_tokens.append("<extra_id_100>")
add_rank = False
if args.add_rank:
add_rank = True
bin_tokens = []
for i in range(101):
bin_tokens.append("{}".format(i))
logger.info('reading training data...')
if args.add_score:
train_set = om.t5Dataset_score(
dataset=args.train,
tokenizer=tokenizer,
max_input=args.max_input,
doc_size=args.doc_size,
bin_tokens=bin_tokens,
add_rank=add_rank,
relieve_CLS=args.relieve_CLS,
number_bin=args.number_bin,
max_query_len=args.max_query_len,
max_seq_len=args.max_seq_len,
)
logger.info('reading dev data...')
dev_set = om.t5Dataset_score(
dataset=args.dev,
tokenizer=tokenizer,
max_input=args.max_input,
doc_size=args.doc_size,
bin_tokens=bin_tokens,
add_rank=add_rank,
relieve_CLS=args.relieve_CLS,
number_bin=args.number_bin,
max_query_len=args.max_query_len,
max_seq_len=args.max_seq_len,
)
logger.info('reading test data...')
test_set = om.t5Dataset_score(
dataset=args.test,
tokenizer=tokenizer,
max_input=args.max_input,
doc_size=args.doc_size,
bin_tokens=bin_tokens,
add_rank=add_rank,
relieve_CLS=args.relieve_CLS,
number_bin=args.number_bin,
max_query_len=args.max_query_len,
max_seq_len=args.max_seq_len,
)
else:
train_set = om.t5Dataset(
dataset=args.train,
tokenizer=tokenizer,
max_input=args.max_input,
doc_size=args.doc_size,
relieve_CLS=args.relieve_CLS,
max_query_len=args.max_query_len,
max_seq_len=args.max_seq_len,
)
logger.info('reading dev data...')
dev_set = om.t5Dataset(
dataset=args.dev,
tokenizer=tokenizer,
doc_size=args.doc_size,
max_input=args.max_input,
relieve_CLS=args.relieve_CLS,
max_query_len=args.max_query_len,
max_seq_len=args.max_seq_len,
)
logger.info('reading test data...')
test_set = om.t5Dataset(
dataset=args.test,
tokenizer=tokenizer,
doc_size=args.doc_size,
max_input=args.max_input,
relieve_CLS=args.relieve_CLS,
max_query_len=args.max_query_len,
max_seq_len=args.max_seq_len,
)
logger.info('loading train data...')
if args.local_rank != -1:
train_sampler = DistributedSampler(train_set)
train_loader = om.DataLoader(
dataset=train_set,
batch_size=args.batch_size,
shuffle=False,
num_workers=8,
sampler=train_sampler
)
dev_sampler = DistributedEvalSampler(dev_set)
logger.info('loading dev data...')
dev_loader = om.DataLoader(
dataset=dev_set,
batch_size=args.dev_batch_size,
shuffle=False,
num_workers=8,
sampler=dev_sampler
)
test_sampler = DistributedEvalSampler(test_set)
logger.info('loading test data...')
test_loader = om.DataLoader(
dataset=test_set,
batch_size=args.dev_batch_size,
shuffle=False,
num_workers=8,
sampler=test_sampler
)
dist.barrier()
else:
train_loader = om.DataLoader(
dataset=train_set,
batch_size=args.batch_size,
shuffle=True,
num_workers=8,
)
logger.info('loading dev data...')
dev_loader = om.DataLoader(
dataset=dev_set,
batch_size=args.dev_batch_size,
shuffle=True,
num_workers=8,
)
logger.info('loading test data...')
test_loader = om.DataLoader(
dataset=test_set,
batch_size=args.dev_batch_size,
shuffle=True,
num_workers=8,
)
logger.info('loading t5 model...')
model = om.t5(
pretrained=args.pretrained,
config=args.config,
doc_size=args.doc_size,
use_global=args.use_global,
num_global_layers=args.num_global_layers,
grad_detach=args.grad_detach,
#new_tokenizer=tokenizer, # resize for bin token
)
dist.barrier()
if args.retraining:
if args.local_rank != -1:
state_dict = torch.load(args.pretrained, map_location='cuda:{}'.format(args.local_rank))
else:
state_dict = torch.load(args.pretrained, map_location='cuda:0')
state_dict = clean_dict_name(state_dict)
model.load_state_dict(state_dict)
model.init_position(args.score_embedding)
logger.info('Loading finished!')
if args.loss.lower() == "bce":
loss_fn = nn.BCELoss()
elif args.loss.lower() == "ce":
loss_fn = nn.CrossEntropyLoss()
elif args.loss.lower() == "list-wise":
loss_fn = ListwiseLoss()
loss_fn.to(device)
model.to(device)
#model.half()
if args.n_gpu > 1:
model = nn.DataParallel(model)
loss_fn = nn.DataParallel(loss_fn)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(
model,
device_ids=[
args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True,
)
dist.barrier()
model.zero_grad()
model.train()
#for key, param in model.named_parameters():
# #print(key)
# if 'position_memory' not in key and 'relative_attention_bias' not in key:
# param.requires_grad = False
if args.optimizer.lower() == 'adam':
m_optim = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr)
elif args.optimizer.lower() == 'adamw':
m_optim = torch.optim.AdamW(filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr)
optimizer_to(m_optim, device)
m_scheduler = get_linear_schedule_with_warmup(m_optim, num_warmup_steps=args.n_warmup_steps, num_training_steps=len(train_set)*args.epoch//(args.batch_size*args.gradient_accumulation_steps) if args.max_steps is None else args.max_steps)
### start training ###
logger.info(args)
train(args, logger, model, m_optim, m_scheduler, train_loader, dev_loader, test_loader, loss_fn, train_sampler=train_sampler)
if args.local_rank != -1:
dist.barrier()
if __name__ == "__main__":
main()