-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathGenerateStims.py
125 lines (92 loc) · 5.09 KB
/
GenerateStims.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import opencortex.core as oc
def generate(cell_id, duration, reference,
Ensyn = 100,
bEnsyn = 200,
Erate = 8,
Irate = 8,
st_onset = 200.0,
st_duration = 200.0,
EbGroundRate = 2,
IbGroundRate = 2):
Insyn = int(Ensyn * 0.2)
bInsyn = int(bEnsyn * 0.2)
cell_file = '%s.cell.nml'%cell_id
nml_doc, network = oc.generate_network(reference, temperature='35degC')
oc.include_neuroml2_cell_and_channels(nml_doc,cell_file,cell_id)
oc.include_neuroml2_file(nml_doc,'AMPA_NMDA.synapse.nml')
oc.include_neuroml2_file(nml_doc,'GABA.synapse.nml')
ampa_nmda1 = oc.add_transient_poisson_firing_synapse(nml_doc,
id="ampa_nmda1",
average_rate="%s Hz"%Erate,
synapse_id='AMPA_NMDA',
delay='%s ms'%st_onset,
duration='%s ms'%st_duration)
gaba1 = oc.add_transient_poisson_firing_synapse(nml_doc,
id="gaba1",
average_rate="%s Hz"%Irate,
synapse_id='GABA',
delay='%s ms'%st_onset,
duration='%s ms'%st_duration)
ampa_nmda_b = oc.add_poisson_firing_synapse(nml_doc,
id="ampa_nmda_b",
average_rate="%s Hz"%EbGroundRate,
synapse_id='AMPA_NMDA')
gaba_b = oc.add_poisson_firing_synapse(nml_doc,
id="gaba_b",
average_rate="%s Hz"%IbGroundRate,
synapse_id='GABA')
pop = oc.add_single_cell_population(network,
'L23_pop',
cell_id)
oc.add_targeted_inputs_to_population(network,
"Esyn",
pop,
ampa_nmda1.id,
segment_group='dendrite_group',
number_per_cell = Ensyn,
all_cells=True)
oc.add_targeted_inputs_to_population(network,
"Isyn",
pop,
gaba1.id,
segment_group='dendrite_group',
number_per_cell = Insyn,
all_cells=True)
oc.add_targeted_inputs_to_population(network,
"Ebsyn",
pop,
ampa_nmda_b.id,
segment_group='dendrite_group',
number_per_cell = bEnsyn,
all_cells=True)
oc.add_targeted_inputs_to_population(network,
"Ibsyn",
pop,
gaba_b.id,
segment_group='dendrite_group',
number_per_cell = bInsyn,
all_cells=True)
nml_file_name = '%s.net.nml'%network.id
oc.save_network(nml_doc, nml_file_name, validate=False)
interesting_seg_ids = [0,200,1000,2000,2500,2949] # [soma, .. some dends .. , axon]
to_plot = {'Some_voltages':[]}
to_save = {'%s_voltages.dat'%cell_id:[]}
for seg_id in interesting_seg_ids:
to_plot.values()[0].append('%s/0/%s/%s/v'%(pop.id, pop.component,seg_id))
to_save.values()[0].append('%s/0/%s/%s/v'%(pop.id, pop.component,seg_id))
oc.generate_lems_simulation(nml_doc,
network,
nml_file_name,
duration,
dt = 0.025,
gen_plots_for_all_v = False,
plot_all_segments = False,
gen_plots_for_quantities = to_plot, # Dict with displays vs lists of quantity paths
gen_saves_for_all_v = False,
save_all_segments = False,
gen_saves_for_quantities = to_save) # Dict with file names vs lists of quantity paths)
if __name__ == "__main__":
cell_id = 'L23_NoHotSpot'
reference = "L23_Stim"
duration = 600
generate(cell_id, duration, reference, Ensyn=100, bEnsyn=200)